2,282 research outputs found

    Dirichlet belief networks for topic structure learning

    Full text link
    Recently, considerable research effort has been devoted to developing deep architectures for topic models to learn topic structures. Although several deep models have been proposed to learn better topic proportions of documents, how to leverage the benefits of deep structures for learning word distributions of topics has not yet been rigorously studied. Here we propose a new multi-layer generative process on word distributions of topics, where each layer consists of a set of topics and each topic is drawn from a mixture of the topics of the layer above. As the topics in all layers can be directly interpreted by words, the proposed model is able to discover interpretable topic hierarchies. As a self-contained module, our model can be flexibly adapted to different kinds of topic models to improve their modelling accuracy and interpretability. Extensive experiments on text corpora demonstrate the advantages of the proposed model.Comment: accepted in NIPS 201

    Beliefs in Decision-Making Cascades

    Full text link
    This work explores a social learning problem with agents having nonidentical noise variances and mismatched beliefs. We consider an NN-agent binary hypothesis test in which each agent sequentially makes a decision based not only on a private observation, but also on preceding agents' decisions. In addition, the agents have their own beliefs instead of the true prior, and have nonidentical noise variances in the private signal. We focus on the Bayes risk of the last agent, where preceding agents are selfish. We first derive the optimal decision rule by recursive belief update and conclude, counterintuitively, that beliefs deviating from the true prior could be optimal in this setting. The effect of nonidentical noise levels in the two-agent case is also considered and analytical properties of the optimal belief curves are given. Next, we consider a predecessor selection problem wherein the subsequent agent of a certain belief chooses a predecessor from a set of candidates with varying beliefs. We characterize the decision region for choosing such a predecessor and argue that a subsequent agent with beliefs varying from the true prior often ends up selecting a suboptimal predecessor, indicating the need for a social planner. Lastly, we discuss an augmented intelligence design problem that uses a model of human behavior from cumulative prospect theory and investigate its near-optimality and suboptimality.Comment: final version, to appear in IEEE Transactions on Signal Processin

    Privacy Preserving Data Publishing

    Get PDF
    Recent years have witnessed increasing interest among researchers in protecting individual privacy in the big data era, involving social media, genomics, and Internet of Things. Recent studies have revealed numerous privacy threats and privacy protection methodologies, that vary across a broad range of applications. To date, however, there exists no powerful methodologies in addressing challenges from: high-dimension data, high-correlation data and powerful attackers. In this dissertation, two critical problems will be investigated: the prospects and some challenges for elucidating the attack capabilities of attackers in mining individuals’ private information; and methodologies that can be used to protect against such inference attacks, while guaranteeing significant data utility. First, this dissertation has proposed a series of works regarding inference attacks laying emphasis on protecting against powerful adversaries with auxiliary information. In the context of genomic data, data dimensions and computation feasibility is highly challenging in conducting data analysis. This dissertation proved that the proposed attack can effectively infer the values of the unknown SNPs and traits in linear complexity, which dramatically improve the computation cost compared with traditional methods with exponential computation cost. Second, putting differential privacy guarantee into high-dimension and high-correlation data remains a challenging problem, due to high-sensitivity, output scalability and signal-to-noise ratio. Consider there are tens-of-millions of genomes in a human DNA, it is infeasible for traditional methods to introduce noise to sanitize genomic data. This dissertation has proposed a series of works and demonstrated that the proposed differentially private method satisfies differential privacy; moreover, data utility is improved compared with the states of the arts by largely lowering data sensitivity. Third, putting privacy guarantee into social data publishing remains a challenging problem, due to tradeoff requirements between data privacy and utility. This dissertation has proposed a series of works and demonstrated that the proposed methods can effectively realize privacy-utility tradeoff in data publishing. Finally, two future research topics are proposed. The first topic is about Privacy Preserving Data Collection and Processing for Internet of Things. The second topic is to study Privacy Preserving Big Data Aggregation. They are motivated by the newly proposed data mining, artificial intelligence and cybersecurity methods

    A Trust Management Framework for Decision Support Systems

    Get PDF
    In the era of information explosion, it is critical to develop a framework which can extract useful information and help people to make “educated” decisions. In our lives, whether we are aware of it, trust has turned out to be very helpful for us to make decisions. At the same time, cognitive trust, especially in large systems, such as Facebook, Twitter, and so on, needs support from computer systems. Therefore, we need a framework that can effectively, but also intuitively, let people express their trust, and enable the system to automatically and securely summarize the massive amounts of trust information, so that a user of the system can make “educated” decisions, or at least not blind decisions. Inspired by the similarities between human trust and physical measurements, this dissertation proposes a measurement theory based trust management framework. It consists of three phases: trust modeling, trust inference, and decision making. Instead of proposing specific trust inference formulas, this dissertation proposes a fundamental framework which is flexible and can be adapted by many different inference formulas. Validation experiments are done on two data sets: the Epinions.com data set and the Twitter data set. This dissertation also adapts the measurement theory based trust management framework for two decision support applications. In the first application, the real stock market data is used as ground truth for the measurement theory based trust management framework. Basically, the correlation between the sentiment expressed on Twitter and stock market data is measured. Compared with existing works which do not differentiate tweets’ authors, this dissertation analyzes trust among stock investors on Twitter and uses the trust network to differentiate tweets’ authors. The results show that by using the measurement theory based trust framework, Twitter sentiment valence is able to reflect abnormal stock returns better than treating all the authors as equally important or weighting them by their number of followers. In the second application, the measurement theory based trust management framework is used to help to detect and prevent from being attacked in cloud computing scenarios. In this application, each single flow is treated as a measurement. The simulation results show that the measurement theory based trust management framework is able to provide guidance for cloud administrators and customers to make decisions, e.g. migrating tasks from suspect nodes to trustworthy nodes, dynamically allocating resources according to trust information, and managing the trade-off between the degree of redundancy and the cost of resources

    AN INVESTIGATION INTO AN EXPERT SYSTEM FOR TELECOMMUNICATION NETWORK DESIGN

    Get PDF
    Many telephone companies, especially in Eastern-Europe and the 'third world', are developing new telephone networks. In such situations the network design engineer needs computer based tools that not only supplement his own knowledge but also help him to cope with situations where not all the information necessary for the design is available. Often traditional network design tools are somewhat removed from the practical world for which they were developed. They often ignore the significant uncertain and statistical nature of the input data. They use data taken from a fixed point in time to solve a time variable problem, and the cost formulae tend to be on an average per line or port rather than the specific case. Indeed, data is often not available or just plainly unreliable. The engineer has to rely on rules of thumb honed over many years of experience in designing networks and be able to cope with missing data. The complexity of telecommunication networks and the rarity of specialists in this area often makes the network design process very difficult for a company. It is therefore an important area for the application of expert systems. Designs resulting from the use of expert systems will have a measure of uncertainty in their solution and adequate account must be made of the risk involved in implementing its design recommendations. The thesis reviews the status of expert systems as used for telecommunication network design. It further shows that such an expert system needs to reduce a large network problem into its component parts, use different modules to solve them and then combine these results to create a total solution. It shows how the various sub-division problems are integrated to solve the general network design problem. This thesis further presents details of such an expert system and the databases necessary for network design: three new algorithms are invented for traffic analysis, node locations and network design and these produce results that have close correlation with designs taken from BT Consultancy archives. It was initially supposed that an efficient combination of existing techniques for dealing with uncertainty within expert systems would suffice for the basis of the new system. It soon became apparent, however, that to allow for the differing attributes of facts, rules and data and the varying degrees of importance or rank within each area, a new and radically different method would be needed. Having investigated the existing uncertainty problem it is believed that a new more rational method has been found. The work has involved the invention of the 'Uncertainty Window' technique and its testing on various aspects of network design, including demand forecast, network dimensioning, node and link system sizing, etc. using a selection of networks that have been designed by BT Consultancy staff. From the results of the analysis, modifications to the technique have been incorporated with the aim of optimising the heuristics and procedures, so that the structure gives an accurate solution as early as possible. The essence of the process is one of associating the uncertainty windows with their relevant rules, data and facts, which results in providing the network designer with an insight into the uncertainties that have helped produce the overall system design: it indicates which sources of uncertainty and which assumptions are were critical for further investigation to improve upon the confidence of the overall design. The windowing technique works by virtue of its ability to retain the composition of the uncertainty and its associated values, assumption, etc. and allows for better solutions to be attained.BRITISH TELECOMMUNICATIONS PL

    Effective connectivity gateways to the Theory of Mind network in processing communicative intention

    Get PDF
    An Intention Processing Network (IPN), involving the medial prefrontal cortex, precuneus, bilateral posterior superior temporal sulcus, and temporoparietal junctions, plays a fundamental role in comprehending intentions underlying action goals. In a previous fMRI study, we showed that, depending on the linguistic or extralinguistic (gestural) modality used to convey the intention, the IPN is complemented by activation of additional brain areas, reflecting distinct modality-specific input gateways to the IPN. These areas involve, for the linguistic modality, the left inferior frontal gyrus (LIFG), and for the extralinguistic modality, the right inferior frontal gyrus (RIFG). Here, we tested the modality-specific gateway hypothesis, by using DCM to measure inter-regional functional integration dynamics between the IPN and LIFG/RIFG gateways. We found strong evidence of a well-defined effective connectivity architecture mediating the functional integration between the IPN and the inferior frontal cortices. The connectivity dynamics indicate a modality-specific propagation of stimulus information from LIFG to IPN for the linguistic modality, and from RIFG to IPN for the extralinguistic modality. Thus, we suggest a functional model in which the modality-specific gateways mediate the structural and semantic decoding of the stimuli, and allow for the modality-specific communicative information to be integrated in Theory of Mind inferences elaborated through the IPN
    • …
    corecore