1,330 research outputs found

    Monotonic regression based on Bayesian P-splines: an application to estimating price response functions from store-level scanner data

    Get PDF
    Generalized additive models have become a widely used instrument for flexible regression analysis. In many practical situations, however, it is desirable to restrict the flexibility of nonparametric estimation in order to accommodate a presumed monotonic relationship between a covariate and the response variable. For example, consumers usually will buy less of a brand if its price increases, and therefore one expects a brand's unit sales to be a decreasing function in own price. We follow a Bayesian approach using penalized B-splines and incorporate the assumption of monotonicity in a natural way by an appropriate specification of the respective prior distributions. We illustrate the methodology in an empirical application modeling demand for a brand of orange juice and show that imposing monotonicity constraints for own- and cross-item price effects improves the predictive validity of the estimated sales response function considerably

    Bayesian Geoadditive Seemingly Unrelated Regression

    Get PDF
    Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covariates. In this paper, we develop a Bayesian semiparametric SUR model, where the usual linear predictors are replaced by more flexible additive predictors allowing for simultaneous nonparametric estimation of such covariate effects and of spatial effects. The approach is based on appropriate smoothness priors which allow different forms and degrees of smoothness in a general framework. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques

    Semiparametric Multinomial Logit Models for Analysing Consumer Choice Behaviour

    Get PDF
    The multinomial logit model (MNL) is one of the most frequently used statistical models in marketing applications. It allows to relate an unordered categorical response variable, for example representing the choice of a brand, to a vector of covariates such as the price of the brand or variables characterising the consumer. In its classical form, all covariates enter in strictly parametric, linear form into the utility function of the MNL model. In this paper, we introduce semiparametric extensions, where smooth effects of continuous covariates are modelled by penalised splines. A mixed model representation of these penalised splines is employed to obtain estimates of the corresponding smoothing parameters, leading to a fully automated estimation procedure. To validate semiparametric models against parametric models, we utilise proper scoring rules and compare parametric and semiparametric approaches for a number of brand choice data sets

    BayesX: Analysing Bayesian structured additive regression models

    Get PDF
    There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the estimation of very complex and realistic models. This paper describes the capabilities of the public domain software BayesX for estimating complex regression models with structured additive predictor. The program extends the capabilities of existing software for semiparametric regression. Many model classes well known from the literature are special cases of the models supported by BayesX. Examples are Generalized Additive (Mixed) Models, Dynamic Models, Varying Coefficient Models, Geoadditive Models, Geographically Weighted Regression and models for space-time regression. BayesX supports the most common distributions for the response variable. For univariate responses these are Gaussian, Binomial, Poisson, Gamma and negative Binomial. For multicategorical responses, both multinomial logit and probit models for unordered categories of the response as well as cumulative threshold models for ordered categories may be estimated. Moreover, BayesX allows the estimation of complex continuous time survival and hazardrate models

    Penalized additive regression for space-time data: a Bayesian perspective

    Get PDF
    We propose extensions of penalized spline generalized additive models for analysing space-time regression data and study them from a Bayesian perspective. Non-linear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects within a unified general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference can be performed either with full (FB) or empirical Bayes (EB) posterior analysis. FB inference using MCMC techniques is a slight extension of own previous work. For EB inference, a computationally efficient solution is developed on the basis of a generalized linear mixed model representation. The second approach can be viewed as posterior mode estimation and is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to smoothing parameters, are then estimated by using marginal likelihood. We carefully compare both inferential procedures in simulation studies and illustrate them through real data applications. The methodology is available in the open domain statistical package BayesX and as an S-plus/R function

    Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors

    Full text link
    This paper brings a contribution to the Bayesian theory of nonparametric and semiparametric estimation. We are interested in the asymptotic normality of the posterior distribution in Gaussian linear regression models when the number of regressors increases with the sample size. Two kinds of Bernstein-von Mises Theorems are obtained in this framework: nonparametric theorems for the parameter itself, and semiparametric theorems for functionals of the parameter. We apply them to the Gaussian sequence model and to the regression of functions in Sobolev and CαC^{\alpha} classes, in which we get the minimax convergence rates. Adaptivity is reached for the Bayesian estimators of functionals in our applications
    corecore