844 research outputs found

    Exact Bayesian curve fitting and signal segmentation.

    Get PDF
    We consider regression models where the underlying functional relationship between the response and the explanatory variable is modeled as independent linear regressions on disjoint segments. We present an algorithm for perfect simulation from the posterior distribution of such a model, even allowing for an unknown number of segments and an unknown model order for the linear regressions within each segment. The algorithm is simple, can scale well to large data sets, and avoids the problem of diagnosing convergence that is present with Monte Carlo Markov Chain (MCMC) approaches to this problem. We demonstrate our algorithm on standard denoising problems, on a piecewise constant AR model, and on a speech segmentation problem

    Segment Parameter Labelling in MCMC Mean-Shift Change Detection

    Get PDF
    This work addresses the problem of segmentation in time series data with respect to a statistical parameter of interest in Bayesian models. It is common to assume that the parameters are distinct within each segment. As such, many Bayesian change point detection models do not exploit the segment parameter patterns, which can improve performance. This work proposes a Bayesian mean-shift change point detection algorithm that makes use of repetition in segment parameters, by introducing segment class labels that utilise a Dirichlet process prior. The performance of the proposed approach was assessed on both synthetic and real world data, highlighting the enhanced performance when using parameter labelling

    Bayesian detection of piecewise linear trends in replicated time-series with application to growth data modelling

    Full text link
    We consider the situation where a temporal process is composed of contiguous segments with differing slopes and replicated noise-corrupted time series measurements are observed. The unknown mean of the data generating process is modelled as a piecewise linear function of time with an unknown number of change-points. We develop a Bayesian approach to infer the joint posterior distribution of the number and position of change-points as well as the unknown mean parameters. A-priori, the proposed model uses an overfitting number of mean parameters but, conditionally on a set of change-points, only a subset of them influences the likelihood. An exponentially decreasing prior distribution on the number of change-points gives rise to a posterior distribution concentrating on sparse representations of the underlying sequence. A Metropolis-Hastings Markov chain Monte Carlo (MCMC) sampler is constructed for approximating the posterior distribution. Our method is benchmarked using simulated data and is applied to uncover differences in the dynamics of fungal growth from imaging time course data collected from different strains. The source code is available on CRAN.Comment: Accepted to International Journal of Biostatistic

    Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach

    Get PDF
    International audienceWe propose a joint segmentation algorithm for piecewise constant autoregressive (AR) processes recorded by several independent sensors. The algorithm is based on a hierarchical Bayesian model. Appropriate priors allow to introduce correlations between the change locations of the observed signals. Numerical problems inherent to Bayesian inference are solved by a Gibbs sampling strategy. The proposed joint segmentation methodology yields improved segmentation results when compared to parallel and independent individual signal segmentations. The initial algorithm is derived for piecewise constant AR processes whose orders are fixed on each segment. However, an extension to models with unknown model orders is also discussed. Theoretical results are illustrated by many simulations conducted with synthetic signals and real arc-tracking and speech signals

    Bayesian orthogonal component analysis for sparse representation

    Get PDF
    This paper addresses the problem of identifying a lower dimensional space where observed data can be sparsely represented. This under-complete dictionary learning task can be formulated as a blind separation problem of sparse sources linearly mixed with an unknown orthogonal mixing matrix. This issue is formulated in a Bayesian framework. First, the unknown sparse sources are modeled as Bernoulli-Gaussian processes. To promote sparsity, a weighted mixture of an atom at zero and a Gaussian distribution is proposed as prior distribution for the unobserved sources. A non-informative prior distribution defined on an appropriate Stiefel manifold is elected for the mixing matrix. The Bayesian inference on the unknown parameters is conducted using a Markov chain Monte Carlo (MCMC) method. A partially collapsed Gibbs sampler is designed to generate samples asymptotically distributed according to the joint posterior distribution of the unknown model parameters and hyperparameters. These samples are then used to approximate the joint maximum a posteriori estimator of the sources and mixing matrix. Simulations conducted on synthetic data are reported to illustrate the performance of the method for recovering sparse representations. An application to sparse coding on under-complete dictionary is finally investigated.Comment: Revised version. Accepted to IEEE Trans. Signal Processin

    A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology

    Get PDF
    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment

    Hierarchical Bayesian sparse image reconstruction with application to MRFM

    Get PDF
    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g. by maximizing the estimated posterior distribution. In our fully Bayesian approach the posteriors of all the parameters are available. Thus our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of our hierarchical Bayesian sparse reconstruction method is illustrated on synthetic and real data collected from a tobacco virus sample using a prototype MRFM instrument.Comment: v2: final version; IEEE Trans. Image Processing, 200
    • 

    corecore