1,057 research outputs found

    Bayesian clustering and tracking of neuronal signals for autonomous neural interfaces

    Get PDF
    This paper introduces a new, unsupervised method for sorting and tracking the non-stationary spike signals of individual neurons in multi-unit extracellular recordings. While this method may be applied to a variety of problems that arise in the field of neural interfaces, its development is motivated by a new class of autonomous neural recording devices. The core of the proposed strategy relies upon an extension of a traditional expectation-maximization (EM) mixture model optimization to incorporate clustering results from the preceding recording interval in a Bayesian manner. Explicit filtering equations for the case of a Gaussian mixture are derived. Techniques using prior data to seed the EM iterations and to select the appropriate model class are also developed. As a natural byproduct of the sorting method, current and prior signal clusters can be matched over time in order to track persisting neurons. Applications of this signal classification method to recordings from macaque parietal cortex show that it provides significantly more consistent clustering and tracking results than traditional methods

    A Miniature Robot for Isolating and Tracking Neurons in Extracellular Cortical Recordings

    Get PDF
    This paper presents a miniature robot device and control algorithm that can autonomously position electrodes in cortical tissue for isolation and tracking of extracellular signals of individual neurons. Autonomous electrode positioning can significantly enhance the efficiency and quality of acute electrophysiolgical experiments aimed at basic understanding of the nervous system. Future miniaturized systems of this sort could also overcome some of the inherent difficulties in estabilishing long-lasting neural interfaces that are needed for practical realization of neural prostheses. The paper describes the robot's design and summarizes the overall structure of the control system that governs the electrode positioning process. We present a new sequential clustering algorithm that is key to improving our system's performance, and which may have other applications in robotics. Experimental results in macaque cortex demonstrate the validity of our approach

    Spike Clustering and Neuron Tracking over Successive Time Windows

    Get PDF
    This paper introduces a new methodology for tracking signals from individual neurons over time in multiunit extracellular recordings. The core of our strategy relies upon an extension of a traditional mixture model approach, with parameter optimization via expectation-maximimization (EM), to incorporate clustering results from the preceding time period in a Bayesian manner. EM initialization is also achieved by utilizing these prior clustering results. After clustering, we match the current and prior clusters to track persisting neurons. Applications of this spike sorting method to recordings from macaque parietal cortex show that it provides significantly more consistent clustering and tracking results

    The Minimum Interval for Confident Spike Sorting: A Sequential Decision Method

    Get PDF
    This paper develops a method to determine the minimum duration interval which ensures that the process of “sorting” the extracellular action potentials recorded during that interval achieves a desired confidence level of accuracy. During the recording process, a sequential decision theory approach continually evaluates a variant of the likelihood ratio test using the model evidence of the sorting/clustering hypotheses. The test is compared against a threshold which encodes a desired confidence level on the accuracy of the subsequent clustering procedure. When the threshold is exceeded, the clustering model with the highest model evidence is accepted. We first develop a testing procedure for a single recording interval, and then extend the method to multi-interval recording by using both Bayesian priors from previous recording intervals and recently developed cluster tracking procedure. Lastly, a more advanced tracker is implemented and initials results are presented. This later procedure is useful for real time applications such as brain machine interfaces and autonomous recording electrodes. We test our theory on recordings from Macaque parietal cortex, showing that the method does reach the desired confidence level

    A control algorithm for autonomous optimization of extracellular recordings

    Get PDF
    This paper develops a control algorithm that can autonomously position an electrode so as to find and then maintain an optimal extracellular recording position. The algorithm was developed and tested in a two-neuron computational model representative of the cells found in cerebral cortex. The algorithm is based on a stochastic optimization of a suitably defined signal quality metric and is shown capable of finding the optimal recording position along representative sampling directions, as well as maintaining the optimal signal quality in the face of modeled tissue movements. The application of the algorithm to acute neurophysiological recording experiments and its potential implications to chronic recording electrode arrays are discussed

    A Bayesian Clustering Method for Tracking Neural Signals Over Successive Intervals

    Get PDF
    This paper introduces a new, unsupervised method for sorting and tracking the action potentials of individual neurons in multiunit extracellular recordings. Presuming the data are divided into short, sequential recording intervals, the core of our strategy relies upon an extension of a traditional mixture model approach that incorporates clustering results from the preceding interval in a Bayesian manner, while still allowing for signal nonstationarity and changing numbers of recorded neurons. As a natural byproduct of the sorting method, current and prior signal clusters can be matched over time in order to track persisting neurons. We also develop techniques to use prior data to appropriately seed the clustering algorithm and select the model class. We present results in a principal components space; however, the algorithm may be applied in any feature space where the distribution of a neuron's spikes may be modeled as Gaussian. Applications of this signal classification method to recordings from macaque parietal cortex show that it provides significantly more consistent clustering and tracking results than traditional methods based on expectation–maximization optimization of mixture models. This consistent tracking ability is crucial for intended applications of the method

    A Bayesian Clustering Method for Tracking Neural Signals Over Successive Intervals

    Full text link

    A control algorithm for autonomous optimization of extracellular recordings

    Full text link

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Bio-inspired relevant interaction modelling in cognitive crowd management

    Get PDF
    Cognitive algorithms, integrated in intelligent systems, represent an important innovation in designing interactive smart environments. More in details, Cognitive Systems have important applications in anomaly detection and management in advanced video surveillance. These algorithms mainly address the problem of modelling interactions and behaviours among the main entities in a scene. A bio-inspired structure is here proposed, which is able to encode and synthesize signals, not only for the description of single entities behaviours, but also for modelling cause–effect relationships between user actions and changes in environment configurations. Such models are stored within a memory (Autobiographical Memory) during a learning phase. Here the system operates an effective knowledge transfer from a human operator towards an automatic systems called Cognitive Surveillance Node (CSN), which is part of a complex cognitive JDL-based and bio-inspired architecture. After such a knowledge-transfer phase, learned representations can be used, at different levels, either to support human decisions, by detecting anomalous interaction models and thus compensating for human shortcomings, or, in an automatic decision scenario, to identify anomalous patterns and choose the best strategy to preserve stability of the entire system. Results are presented in a video surveillance scenario , where the CSN can observe two interacting entities consisting in a simulated crowd and a human operator. These can interact within a visual 3D simulator, where crowd behaviour is modelled by means of Social Forces. The way anomalies are detected and consequently handled is demonstrated, on synthetic and also on real video sequences, in both the user-support and automatic modes
    corecore