623 research outputs found

    Fast Motion Deblurring Using Sensor-Aided Motion Trajectory Estimation

    Get PDF
    This paper presents an image deblurring algorithm to remove motion blur using analysis of motion trajectories and local statistics based on inertial sensors. The proposed method estimates a point-spread-function (PSF) of motion blur by accumulating reweighted projections of the trajectory. A motion blurred image is then adaptively restored using the estimated PSF and spatially varying activity map to reduce both restoration artifacts and noise amplification. Experimental results demonstrate that the proposed method outperforms existing PSF estimation-based motion deconvolution methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed in various imaging devices because of its efficient implementation without an iterative computational structure

    Image enhancement methods and applications in computational photography

    Get PDF
    Computational photography is currently a rapidly developing and cutting-edge topic in applied optics, image sensors and image processing fields to go beyond the limitations of traditional photography. The innovations of computational photography allow the photographer not only merely to take an image, but also, more importantly, to perform computations on the captured image data. Good examples of these innovations include high dynamic range imaging, focus stacking, super-resolution, motion deblurring and so on. Although extensive work has been done to explore image enhancement techniques in each subfield of computational photography, attention has seldom been given to study of the image enhancement technique of simultaneously extending depth of field and dynamic range of a scene. In my dissertation, I present an algorithm which combines focus stacking and high dynamic range (HDR) imaging in order to produce an image with both extended depth of field (DOF) and dynamic range than any of the input images. In this dissertation, I also investigate super-resolution image restoration from multiple images, which are possibly degraded by large motion blur. The proposed algorithm combines the super-resolution problem and blind image deblurring problem in a unified framework. The blur kernel for each input image is separately estimated. I also do not make any restrictions on the motion fields among images; that is, I estimate dense motion field without simplifications such as parametric motion. While the proposed super-resolution method uses multiple images to enhance spatial resolution from multiple regular images, single image super-resolution is related to techniques of denoising or removing blur from one single captured image. In my dissertation, space-varying point spread function (PSF) estimation and image deblurring for single image is also investigated. Regarding the PSF estimation, I do not make any restrictions on the type of blur or how the blur varies spatially. Once the space-varying PSF is estimated, space-varying image deblurring is performed, which produces good results even for regions where it is not clear what the correct PSF is at first. I also bring image enhancement applications to both personal computer (PC) and Android platform as computational photography applications

    Linear Reconstruction of Non-Stationary Image Ensembles Incorporating Blur and Noise Models

    Get PDF
    Two new linear reconstruction techniques are developed to improve the resolution of images collected by ground-based telescopes imaging through atmospheric turbulence. The classical approach involves the application of constrained least squares (CLS) to the deconvolution from wavefront sensing (DWFS) technique. The new algorithm incorporates blur and noise models to select the appropriate regularization constant automatically. In all cases examined, the Newton-Raphson minimization converged to a solution in less than 10 iterations. The non-iterative Bayesian approach involves the development of a new vector Wiener filter which is optimal with respect to mean square error (MSE) for a non-stationary object class degraded by atmospheric turbulence and measurement noise. This research involves the first extension of the Wiener filter to account properly for shot noise and an unknown, random optical transfer function (OTF). The vector Wiener filter provides superior reconstructions when compared to the traditional scalar Wiener filter for a non-stationary object class. In addition, the new filter can provide a superresolution capability when the object\u27s Fourier domain statistics are known for spatial frequencies beyond the OTF cutoff. A generalized performance and robustness study of the vector Wiener filter showed that MSE performance is fundamentally limited by object signal-to-noise ratio (SNR) and correlation between object pixels

    Motion Offset for Blur Modeling

    Get PDF
    Motion blur caused by the relative movement between the camera and the subject is often an undesirable degradation of the image quality. In most conventional deblurring methods, a blur kernel is estimated for image deconvolution. Due to the ill-posed nature, predefined priors are proposed to suppress the ill-posedness. However, these predefined priors can only handle some specific situations. In order to achieve a better deblurring performance on dynamic scene, deep-learning based methods are proposed to learn a mapping function that restore the sharp image from a blurry image. The blur may be implicitly modelled in feature extraction module. However, the blur modelled from the paired dataset cannot be well generalized to some real-world scenes. To summary, an accurate and dynamic blur model that more closely approximates real-world blur is needed. By revisiting the principle of camera exposure, we can model the blur with the displacements between sharp pixels and the exposed pixel, namely motion offsets. Given specific physical constraints, motion offsets are able to form different exposure trajectories (i.e. linear, quadratic). Compare to conventional blur kernel, our proposed motion offsets are a more rigorous approximation for real-world blur, since they can constitute a non-linear and non-uniform motion field. Through learning from dynamic scene dataset, an accurate and spatial-variant motion offset field is obtained. With accurate motion information and a compact blur modeling method, we explore the ways of utilizing motion information to facilitate multiple blur-related tasks. By introducing recovered motion offsets, we build up a motion-aware and spatial-variant convolution. For extracting a video clip from a blurry image, motion offsets can provide an explicit (non-)linear motion trajectory for interpolating. We also work towards a better image deblurring performance in real-world scenarios by improving the generalization ability of the deblurring model

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Near-invariant blur for depth and 2D motion via time-varying light field analysis

    Get PDF
    Recently, several camera designs have been proposed for either making defocus blur invariant to scene depth or making motion blur invariant to object motion. The benefit of such invariant capture is that no depth or motion estimation is required to remove the resultant spatially uniform blur. So far, the techniques have been studied separately for defocus and motion blur, and object motion has been assumed 1D (e.g., horizontal). This article explores a more general capture method that makes both defocus blur and motion blur nearly invariant to scene depth and in-plane 2D object motion. We formulate the problem as capturing a time-varying light field through a time-varying light field modulator at the lens aperture, and perform 5D (4D light field + 1D time) analysis of all the existing computational cameras for defocus/motion-only deblurring and their hybrids. This leads to a surprising conclusion that focus sweep, previously known as a depth-invariant capture method that moves the plane of focus through a range of scene depth during exposure, is near-optimal both in terms of depth and 2D motion invariance and in terms of high-frequency preservation for certain combinations of depth and motion ranges. Using our prototype camera, we demonstrate joint defocus and motion deblurring for moving scenes with depth variation

    Modeling the Performance of Image Restoration From Motion Blur

    Full text link

    Variational inference for computational imaging inverse problems

    Get PDF
    Machine learning methods for computational imaging require uncertainty estimation to be reliable in real settings. While Bayesian models offer a computationally tractable way of recovering uncertainty, they need large data volumes to be trained, which in imaging applications implicates prohibitively expensive collections with specific imaging instruments. This paper introduces a novel framework to train variational inference for inverse problems exploiting in combination few experimentally collected data, domain expertise and existing image data sets. In such a way, Bayesian machine learning models can solve imaging inverse problems with minimal data collection efforts. Extensive simulated experiments show the advantages of the proposed framework. The approach is then applied to two real experimental optics settings: holographic image reconstruction and imaging through highly scattering media. In both settings, state of the art reconstructions are achieved with little collection of training data

    New Datasets, Models, and Optimization

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ์†ํ˜„ํƒœ.์‚ฌ์ง„ ์ดฌ์˜์˜ ๊ถ๊ทน์ ์ธ ๋ชฉํ‘œ๋Š” ๊ณ ํ’ˆ์งˆ์˜ ๊นจ๋—ํ•œ ์˜์ƒ์„ ์–ป๋Š” ๊ฒƒ์ด๋‹ค. ํ˜„์‹ค์ ์œผ๋กœ, ์ผ์ƒ์˜ ์‚ฌ์ง„์€ ์ž์ฃผ ํ”๋“ค๋ฆฐ ์นด๋ฉ”๋ผ์™€ ์›€์ง์ด๋Š” ๋ฌผ์ฒด๊ฐ€ ์žˆ๋Š” ๋™์  ํ™˜๊ฒฝ์—์„œ ์ฐ๋Š”๋‹ค. ๋…ธ์ถœ์‹œ๊ฐ„ ์ค‘์˜ ์นด๋ฉ”๋ผ์™€ ํ”ผ์‚ฌ์ฒด๊ฐ„์˜ ์ƒ๋Œ€์ ์ธ ์›€์ง์ž„์€ ์‚ฌ์ง„๊ณผ ๋™์˜์ƒ์—์„œ ๋ชจ์…˜ ๋ธ”๋Ÿฌ๋ฅผ ์ผ์œผํ‚ค๋ฉฐ ์‹œ๊ฐ์ ์ธ ํ™”์งˆ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๋™์  ํ™˜๊ฒฝ์—์„œ ๋ธ”๋Ÿฌ์˜ ์„ธ๊ธฐ์™€ ์›€์ง์ž„์˜ ๋ชจ์–‘์€ ๋งค ์ด๋ฏธ์ง€๋งˆ๋‹ค, ๊ทธ๋ฆฌ๊ณ  ๋งค ํ”ฝ์…€๋งˆ๋‹ค ๋‹ค๋ฅด๋‹ค. ๊ตญ์ง€์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋ธ”๋Ÿฌ์˜ ์„ฑ์งˆ์€ ์‚ฌ์ง„๊ณผ ๋™์˜์ƒ์—์„œ์˜ ๋ชจ์…˜ ๋ธ”๋Ÿฌ ์ œ๊ฑฐ๋ฅผ ์‹ฌ๊ฐํ•˜๊ฒŒ ํ’€๊ธฐ ์–ด๋ ค์šฐ๋ฉฐ ํ•ด๋‹ต์ด ํ•˜๋‚˜๋กœ ์ •ํ•ด์ง€์ง€ ์•Š์€, ์ž˜ ์ •์˜๋˜์ง€ ์•Š์€ ๋ฌธ์ œ๋กœ ๋งŒ๋“ ๋‹ค. ๋ฌผ๋ฆฌ์ ์ธ ์›€์ง์ž„ ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ํ•ด์„์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์„ค๊ณ„ํ•˜๊ธฐ๋ณด๋‹ค๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์ ‘๊ทผ๋ฒ•์€ ์ด๋Ÿฌํ•œ ์ž˜ ์ •์˜๋˜์ง€ ์•Š์€ ๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š” ๋ณด๋‹ค ํ˜„์‹ค์ ์ธ ๋‹ต์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ๋”ฅ ๋Ÿฌ๋‹์€ ์ตœ๊ทผ ์ปดํ“จํ„ฐ ๋น„์ „ ํ•™๊ณ„์—์„œ ํ‘œ์ค€์ ์ธ ๊ธฐ๋ฒ•์ด ๋˜์–ด ๊ฐ€๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์‚ฌ์ง„ ๋ฐ ๋น„๋””์˜ค ๋””๋ธ”๋Ÿฌ๋ง ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋”ฅ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์†”๋ฃจ์…˜์„ ๋„์ž…ํ•˜๋ฉฐ ์—ฌ๋Ÿฌ ํ˜„์‹ค์ ์ธ ๋ฌธ์ œ๋ฅผ ๋‹ค๊ฐ์ ์œผ๋กœ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋””๋ธ”๋Ÿฌ๋ง ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ์ทจ๋“ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ชจ์…˜ ๋ธ”๋Ÿฌ๊ฐ€ ์žˆ๋Š” ์ด๋ฏธ์ง€์™€ ๊นจ๋—ํ•œ ์ด๋ฏธ์ง€๋ฅผ ์‹œ๊ฐ„์ ์œผ๋กœ ์ •๋ ฌ๋œ ์ƒํƒœ๋กœ ๋™์‹œ์— ์ทจ๋“ํ•˜๋Š” ๊ฒƒ์€ ์‰ฌ์šด ์ผ์ด ์•„๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ๋””๋ธ”๋Ÿฌ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ง€๋„ํ•™์Šต ๊ธฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ๋„ ๋ถˆ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณ ์† ๋น„๋””์˜ค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์นด๋ฉ”๋ผ ์˜์ƒ ์ทจ๋“ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋ชจ๋ฐฉํ•˜๋ฉด ์‹ค์ œ์ ์ธ ๋ชจ์…˜ ๋ธ”๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ธฐ์กด์˜ ๋ธ”๋Ÿฌ ํ•ฉ์„ฑ ๊ธฐ๋ฒ•๋“ค๊ณผ ๋‹ฌ๋ฆฌ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์—ฌ๋Ÿฌ ์›€์ง์ด๋Š” ํ”ผ์‚ฌ์ฒด๋“ค๊ณผ ๋‹ค์–‘ํ•œ ์˜์ƒ ๊นŠ์ด, ์›€์ง์ž„ ๊ฒฝ๊ณ„์—์„œ์˜ ๊ฐ€๋ฆฌ์›Œ์ง ๋“ฑ์œผ๋กœ ์ธํ•œ ์ž์—ฐ์Šค๋Ÿฌ์šด ๊ตญ์†Œ์  ๋ธ”๋Ÿฌ์˜ ๋ณต์žก๋„๋ฅผ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์ œ์•ˆ๋œ ๋ฐ์ดํ„ฐ์…‹์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋‹จ์ผ์˜์ƒ ๋””๋ธ”๋Ÿฌ๋ง์„ ์œ„ํ•œ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ตœ์ ํ™”๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๋””๋ธ”๋Ÿฌ๋ง ๋ฐฉ์‹์—์„œ ๋„๋ฆฌ ์“ฐ์ด๊ณ  ์žˆ๋Š” ์ ์ฐจ์  ๋ฏธ์„ธํ™” ์ ‘๊ทผ๋ฒ•์„ ๋ฐ˜์˜ํ•˜์—ฌ ๋‹ค์ค‘๊ทœ๋ชจ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋‹ค์ค‘๊ทœ๋ชจ ๋ชจ๋ธ์€ ๋น„์Šทํ•œ ๋ณต์žก๋„๋ฅผ ๊ฐ€์ง„ ๋‹จ์ผ๊ทœ๋ชจ ๋ชจ๋ธ๋“ค๋ณด๋‹ค ๋†’์€ ๋ณต์› ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ, ๋น„๋””์˜ค ๋””๋ธ”๋Ÿฌ๋ง์„ ์œ„ํ•œ ์ˆœํ™˜ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋””๋ธ”๋Ÿฌ๋ง์„ ํ†ตํ•ด ๊ณ ํ’ˆ์งˆ์˜ ๋น„๋””์˜ค๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ํ”„๋ ˆ์ž„๊ฐ„์˜ ์‹œ๊ฐ„์ ์ธ ์ •๋ณด์™€ ํ”„๋ ˆ์ž„ ๋‚ด๋ถ€์ ์ธ ์ •๋ณด๋ฅผ ๋ชจ๋‘ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋‚ด๋ถ€ํ”„๋ ˆ์ž„ ๋ฐ˜๋ณต์  ์—ฐ์‚ฐ๊ตฌ์กฐ๋Š” ๋‘ ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•จ๊ป˜ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค์ง€ ์•Š๊ณ ๋„ ๋””๋ธ”๋Ÿฌ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ƒˆ๋กœ์šด ๋””๋ธ”๋Ÿฌ๋ง ๋ชจ๋ธ๋“ค์„ ๋ณด๋‹ค ์ž˜ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋กœ์Šค ํ•จ์ˆ˜๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊นจ๋—ํ•˜๊ณ  ๋˜๋ ทํ•œ ์‚ฌ์ง„ ํ•œ ์žฅ์œผ๋กœ๋ถ€ํ„ฐ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ชจ์…˜ ๋ธ”๋Ÿฌ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฒƒ์€ ๋ธ”๋Ÿฌ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ๊ฒƒ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ†ต์ƒ ์‚ฌ์šฉํ•˜๋Š” ๋กœ์Šค ํ•จ์ˆ˜๋กœ ์–ป์€ ๋””๋ธ”๋Ÿฌ๋ง ๋ฐฉ๋ฒ•๋“ค์€ ๋ธ”๋Ÿฌ๋ฅผ ์™„์ „ํžˆ ์ œ๊ฑฐํ•˜์ง€ ๋ชปํ•˜๋ฉฐ ๋””๋ธ”๋Ÿฌ๋œ ์ด๋ฏธ์ง€์˜ ๋‚จ์•„์žˆ๋Š” ๋ธ”๋Ÿฌ๋กœ๋ถ€ํ„ฐ ์›๋ž˜์˜ ๋ธ”๋Ÿฌ๋ฅผ ์žฌ๊ฑดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฆฌ๋ธ”๋Ÿฌ๋ง ๋กœ์Šค ํ•จ์ˆ˜๋Š” ๋””๋ธ”๋Ÿฌ๋ง ์ˆ˜ํ–‰์‹œ ๋ชจ์…˜ ๋ธ”๋Ÿฌ๋ฅผ ๋ณด๋‹ค ์ž˜ ์ œ๊ฑฐํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด์— ๋‚˜์•„๊ฐ€ ์ œ์•ˆํ•œ ์ž๊ธฐ์ง€๋„ํ•™์Šต ๊ณผ์ •์œผ๋กœ๋ถ€ํ„ฐ ํ…Œ์ŠคํŠธ์‹œ ๋ชจ๋ธ์ด ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์— ์ ์‘ํ•˜๋„๋ก ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์ œ์•ˆ๋œ ๋ฐ์ดํ„ฐ์…‹, ๋ชจ๋ธ ๊ตฌ์กฐ, ๊ทธ๋ฆฌ๊ณ  ๋กœ์Šค ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๋”ฅ ๋Ÿฌ๋‹์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๋‹จ์ผ ์˜์ƒ ๋ฐ ๋น„๋””์˜ค ๋””๋ธ”๋Ÿฌ๋ง ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ๊ด‘๋ฒ”์œ„ํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ์ •๋Ÿ‰์  ๋ฐ ์ •์„ฑ์ ์œผ๋กœ ์ตœ์ฒจ๋‹จ ๋””๋ธ”๋Ÿฌ๋ง ์„ฑ๊ณผ๋ฅผ ์ฆ๋ช…ํ•œ๋‹ค.Obtaining a high-quality clean image is the ultimate goal of photography. In practice, daily photography is often taken in dynamic environments with moving objects as well as shaken cameras. The relative motion between the camera and the objects during the exposure causes motion blur in images and videos, degrading the visual quality. The degree of blur strength and the shape of motion trajectory varies by every image and every pixel in dynamic environments. The locally-varying property makes the removal of motion blur in images and videos severely ill-posed. Rather than designing analytic solutions with physical modelings, using machine learning-based approaches can serve as a practical solution for such a highly ill-posed problem. Especially, deep-learning has been the recent standard in computer vision literature. This dissertation introduces deep learning-based solutions for image and video deblurring by tackling practical issues in various aspects. First, a new way of constructing the datasets for dynamic scene deblurring task is proposed. It is nontrivial to simultaneously obtain a pair of the blurry and the sharp image that are temporally aligned. The lack of data prevents the supervised learning techniques to be developed as well as the evaluation of deblurring algorithms. By mimicking the camera image pipeline with high-speed videos, realistic blurry images could be synthesized. In contrast to the previous blur synthesis methods, the proposed approach can reflect the natural complex local blur from and multiple moving objects, varying depth, and occlusion at motion boundaries. Second, based on the proposed datasets, a novel neural network architecture for single-image deblurring task is presented. Adopting the coarse-to-fine approach that is widely used in energy optimization-based methods for image deblurring, a multi-scale neural network architecture is derived. Compared with the single-scale model with similar complexity, the multi-scale model exhibits higher accuracy and faster speed. Third, a light-weight recurrent neural network model architecture for video deblurring is proposed. In order to obtain a high-quality video from deblurring, it is important to exploit the intrinsic information in the target frame as well as the temporal relation between the neighboring frames. Taking benefits from both sides, the proposed intra-frame iterative scheme applied to the RNNs achieves accuracy improvements without increasing the number of model parameters. Lastly, a novel loss function is proposed to better optimize the deblurring models. Estimating a dynamic blur for a clean and sharp image without given motion information is another ill-posed problem. While the goal of deblurring is to completely get rid of motion blur, conventional loss functions fail to train neural networks to fulfill the goal, leaving the trace of blur in the deblurred images. The proposed reblurring loss functions are designed to better eliminate the motion blur and to produce sharper images. Furthermore, the self-supervised learning process facilitates the adaptation of the deblurring model at test-time. With the proposed datasets, model architectures, and the loss functions, the deep learning-based single-image and video deblurring methods are presented. Extensive experimental results demonstrate the state-of-the-art performance both quantitatively and qualitatively.1 Introduction 1 2 Generating Datasets for Dynamic Scene Deblurring 7 2.1 Introduction 7 2.2 GOPRO dataset 9 2.3 REDS dataset 11 2.4 Conclusion 18 3 Deep Multi-Scale Convolutional Neural Networks for Single Image Deblurring 19 3.1 Introduction 19 3.1.1 Related Works 21 3.1.2 Kernel-Free Learning for Dynamic Scene Deblurring 23 3.2 Proposed Method 23 3.2.1 Model Architecture 23 3.2.2 Training 26 3.3 Experiments 29 3.3.1 Comparison on GOPRO Dataset 29 3.3.2 Comparison on Kohler Dataset 33 3.3.3 Comparison on Lai et al. [54] dataset 33 3.3.4 Comparison on Real Dynamic Scenes 34 3.3.5 Effect of Adversarial Loss 34 3.4 Conclusion 41 4 Intra-Frame Iterative RNNs for Video Deblurring 43 4.1 Introduction 43 4.2 Related Works 46 4.3 Proposed Method 50 4.3.1 Recurrent Video Deblurring Networks 51 4.3.2 Intra-Frame Iteration Model 52 4.3.3 Regularization by Stochastic Training 56 4.4 Experiments 58 4.4.1 Datasets 58 4.4.2 Implementation details 59 4.4.3 Comparisons on GOPRO [72] dataset 59 4.4.4 Comparisons on [97] Dataset and Real Videos 60 4.5 Conclusion 61 5 Learning Loss Functions for Image Deblurring 67 5.1 Introduction 67 5.2 Related Works 71 5.3 Proposed Method 73 5.3.1 Clean Images are Hard to Reblur 73 5.3.2 Supervision from Reblurring Loss 75 5.3.3 Test-time Adaptation by Self-Supervision 76 5.4 Experiments 78 5.4.1 Effect of Reblurring Loss 78 5.4.2 Effect of Sharpness Preservation Loss 80 5.4.3 Comparison with Other Perceptual Losses 81 5.4.4 Effect of Test-time Adaptation 81 5.4.5 Comparison with State-of-The-Art Methods 82 5.4.6 Real World Image Deblurring 85 5.4.7 Combining Reblurring Loss with Other Perceptual Losses 86 5.4.8 Perception vs. Distortion Trade-Off 87 5.4.9 Visual Comparison of Loss Function 88 5.4.10 Implementation Details 89 5.4.11 Determining Reblurring Module Size 94 5.5 Conclusion 95 6 Conclusion 97 ๊ตญ๋ฌธ ์ดˆ๋ก 115 ๊ฐ์‚ฌ์˜ ๊ธ€ 117๋ฐ•
    • โ€ฆ
    corecore