13,722 research outputs found

    Blind Single Channel Deconvolution using Nonstationary Signal Processing

    Get PDF

    Black-Box Data-efficient Policy Search for Robotics

    Get PDF
    The most data-efficient algorithms for reinforcement learning (RL) in robotics are based on uncertain dynamical models: after each episode, they first learn a dynamical model of the robot, then they use an optimization algorithm to find a policy that maximizes the expected return given the model and its uncertainties. It is often believed that this optimization can be tractable only if analytical, gradient-based algorithms are used; however, these algorithms require using specific families of reward functions and policies, which greatly limits the flexibility of the overall approach. In this paper, we introduce a novel model-based RL algorithm, called Black-DROPS (Black-box Data-efficient RObot Policy Search) that: (1) does not impose any constraint on the reward function or the policy (they are treated as black-boxes), (2) is as data-efficient as the state-of-the-art algorithm for data-efficient RL in robotics, and (3) is as fast (or faster) than analytical approaches when several cores are available. The key idea is to replace the gradient-based optimization algorithm with a parallel, black-box algorithm that takes into account the model uncertainties. We demonstrate the performance of our new algorithm on two standard control benchmark problems (in simulation) and a low-cost robotic manipulator (with a real robot).Comment: Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017; Code at http://github.com/resibots/blackdrops; Video at http://youtu.be/kTEyYiIFGP

    Sparse Inpainting and Isotropy

    Full text link
    Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.Comment: 18 pages, 6 figures. v3: matches version published in JCAP; formatting changes and single typo correction only. Code available from http://zuserver2.star.ucl.ac.uk/~smf/code.htm

    A Bayesian approach to QCD sum rules

    Full text link
    QCD sum rules are analyzed with the help of the Maximum Entropy Method. We develop a new technique based on the Bayesion inference theory, which allows us to directly obtain the spectral function of a given correlator from the results of the operator product expansion given in the deep euclidean 4-momentum region. The most important advantage of this approach is that one does not have to make any a priori assumptions about the functional form of the spectral function, such as the "pole + continuum" ansatz that has been widely used in QCD sum rule studies, but only needs to specify the asymptotic values of the spectral function at high and low energies as an input. As a first test of the applicability of this method, we have analyzed the sum rules of the rho-meson, a case where the sum rules are known to work well. Our results show a clear peak structure in the region of the experimental mass of the rho-meson. We thus demonstrate that the Maximum Entropy Method is successfully applied and that it is an efficient tool in the analysis of QCD sum rules.Comment: 24 pages, 12 figures, 2 tables, extended discussion on the role of the default model, several typos corrected, published versio

    Nonparametric identification of linearizations and uncertainty using Gaussian process models – application to robust wheel slip control

    Get PDF
    Gaussian process prior models offer a nonparametric approach to modelling unknown nonlinear systems from experimental data. These are flexible models which automatically adapt their model complexity to the available data, and which give not only mean predictions but also the variance of these predictions. A further advantage is the analytical derivation of derivatives of the model with respect to inputs, with their variance, providing a direct estimate of the locally linearized model with its corresponding parameter variance. We show how this can be used to tune a controller based on the linearized models, taking into account their uncertainty. The approach is applied to a simulated wheel slip control task illustrating controller development based on a nonparametric model of the unknown friction nonlinearity. Local stability and robustness of the controllers are tuned based on the uncertainty of the nonlinear models’ derivatives

    Fitting the Phenomenological MSSM

    Full text link
    We perform a global Bayesian fit of the phenomenological minimal supersymmetric standard model (pMSSM) to current indirect collider and dark matter data. The pMSSM contains the most relevant 25 weak-scale MSSM parameters, which are simultaneously fit using `nested sampling' Monte Carlo techniques in more than 15 years of CPU time. We calculate the Bayesian evidence for the pMSSM and constrain its parameters and observables in the context of two widely different, but reasonable, priors to determine which inferences are robust. We make inferences about sparticle masses, the sign of the μ\mu parameter, the amount of fine tuning, dark matter properties and the prospects for direct dark matter detection without assuming a restrictive high-scale supersymmetry breaking model. We find the inferred lightest CP-even Higgs boson mass as an example of an approximately prior independent observable. This analysis constitutes the first statistically convergent pMSSM global fit to all current data.Comment: Added references, paragraph on fine-tunin

    Automatic LQR Tuning Based on Gaussian Process Global Optimization

    Full text link
    This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four-dimensional tuning problems highlight the method's potential for automatic controller tuning on robotic platforms.Comment: 8 pages, 5 figures, to appear in IEEE 2016 International Conference on Robotics and Automation. Video demonstration of the experiments available at https://am.is.tuebingen.mpg.de/publications/marco_icra_201

    Network Psychometrics

    Full text link
    This chapter provides a general introduction of network modeling in psychometrics. The chapter starts with an introduction to the statistical model formulation of pairwise Markov random fields (PMRF), followed by an introduction of the PMRF suitable for binary data: the Ising model. The Ising model is a model used in ferromagnetism to explain phase transitions in a field of particles. Following the description of the Ising model in statistical physics, the chapter continues to show that the Ising model is closely related to models used in psychometrics. The Ising model can be shown to be equivalent to certain kinds of logistic regression models, loglinear models and multi-dimensional item response theory (MIRT) models. The equivalence between the Ising model and the MIRT model puts standard psychometrics in a new light and leads to a strikingly different interpretation of well-known latent variable models. The chapter gives an overview of methods that can be used to estimate the Ising model, and concludes with a discussion on the interpretation of latent variables given the equivalence between the Ising model and MIRT.Comment: In Irwing, P., Hughes, D., and Booth, T. (2018). The Wiley Handbook of Psychometric Testing, 2 Volume Set: A Multidisciplinary Reference on Survey, Scale and Test Development. New York: Wile
    corecore