374 research outputs found

    From images via symbols to contexts: using augmented reality for interactive model acquisition

    Get PDF
    Systems that perform in real environments need to bind the internal state to externally perceived objects, events, or complete scenes. How to learn this correspondence has been a long standing problem in computer vision as well as artificial intelligence. Augmented Reality provides an interesting perspective on this problem because a human user can directly relate displayed system results to real environments. In the following we present a system that is able to bootstrap internal models from user-system interactions. Starting from pictorial representations it learns symbolic object labels that provide the basis for storing observed episodes. In a second step, more complex relational information is extracted from stored episodes that enables the system to react on specific scene contexts

    A cognitive ego-vision system for interactive assistance

    Get PDF
    With increasing computational power and decreasing size, computers nowadays are already wearable and mobile. They become attendant of peoples' everyday life. Personal digital assistants and mobile phones equipped with adequate software gain a lot of interest in public, although the functionality they provide in terms of assistance is little more than a mobile databases for appointments, addresses, to-do lists and photos. Compared to the assistance a human can provide, such systems are hardly to call real assistants. The motivation to construct more human-like assistance systems that develop a certain level of cognitive capabilities leads to the exploration of two central paradigms in this work. The first paradigm is termed cognitive vision systems. Such systems take human cognition as a design principle of underlying concepts and develop learning and adaptation capabilities to be more flexible in their application. They are embodied, active, and situated. Second, the ego-vision paradigm is introduced as a very tight interaction scheme between a user and a computer system that especially eases close collaboration and assistance between these two. Ego-vision systems (EVS) take a user's (visual) perspective and integrate the human in the system's processing loop by means of a shared perception and augmented reality. EVSs adopt techniques of cognitive vision to identify objects, interpret actions, and understand the user's visual perception. And they articulate their knowledge and interpretation by means of augmentations of the user's own view. These two paradigms are studied as rather general concepts, but always with the goal in mind to realize more flexible assistance systems that closely collaborate with its users. This work provides three major contributions. First, a definition and explanation of ego-vision as a novel paradigm is given. Benefits and challenges of this paradigm are discussed as well. Second, a configuration of different approaches that permit an ego-vision system to perceive its environment and its user is presented in terms of object and action recognition, head gesture recognition, and mosaicing. These account for the specific challenges identified for ego-vision systems, whose perception capabilities are based on wearable sensors only. Finally, a visual active memory (VAM) is introduced as a flexible conceptual architecture for cognitive vision systems in general, and for assistance systems in particular. It adopts principles of human cognition to develop a representation for information stored in this memory. So-called memory processes continuously analyze, modify, and extend the content of this VAM. The functionality of the integrated system emerges from their coordinated interplay of these memory processes. An integrated assistance system applying the approaches and concepts outlined before is implemented on the basis of the visual active memory. The system architecture is discussed and some exemplary processing paths in this system are presented and discussed. It assists users in object manipulation tasks and has reached a maturity level that allows to conduct user studies. Quantitative results of different integrated memory processes are as well presented as an assessment of the interactive system by means of these user studies

    Development Of A High Performance Mosaicing And Super-Resolution Algorithm

    Get PDF
    In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic which is iteratively updated by the robust super resolution algorithm to achieve the final high-resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing shows that the proposed algorithm is effective in improving the captured aerial data and the performance metrics are accurate in quantifying the evaluation of the algorithm

    Cognitive visual tracking and camera control

    Get PDF
    Cognitive visual tracking is the process of observing and understanding the behaviour of a moving person. This paper presents an efficient solution to extract, in real-time, high-level information from an observed scene, and generate the most appropriate commands for a set of pan-tilt-zoom (PTZ) cameras in a surveillance scenario. Such a high-level feedback control loop, which is the main novelty of our work, will serve to reduce uncertainties in the observed scene and to maximize the amount of information extracted from it. It is implemented with a distributed camera system using SQL tables as virtual communication channels, and Situation Graph Trees for knowledge representation, inference and high-level camera control. A set of experiments in a surveillance scenario show the effectiveness of our approach and its potential for real applications of cognitive vision

    Statistical moving object detection for mobile devices with camera

    Get PDF
    A novel and high-quality system for moving object detection in sequences recorded with moving cameras is proposed. This system is based on the collaboration between an automatic homography estimation module for image alignment, and a robust moving object detection using an efficient spatiotemporal nonparametric background modeling

    Developing object detection, tracking and image mosaicing algorithms for visual surveillance

    Get PDF
    Visual surveillance systems are becoming increasingly important in the last decades due to proliferation of cameras. These systems have been widely used in scientific, commercial and end-user applications where they can store, extract and infer huge amount of information automatically without human help. In this thesis, we focus on developing object detection, tracking and image mosaicing algorithms for a visual surveillance system. First, we review some real-time object detection algorithms that exploit motion cue and enhance one of them that is suitable for use in dynamic scenes. This algorithm adopts a nonparametric probabilistic model over the whole image and exploits pixel adjacencies to detect foreground regions under even small baseline motion. Then we develop a multiple object tracking algorithm which utilizes this algorithm as its detection step. The algorithm analyzes multiple object interactions in a probabilistic framework using virtual shells to track objects in case of severe occlusions. The final part of the thesis is devoted to an image mosaicing algorithm that stitches ordered images to create a large and visually attractive mosaic for large sequence of images. The proposed mosaicing method eliminates nonlinear optimization techniques with the capability of real-time operation on large datasets. Experimental results show that developed algorithms work quite successfully in dynamic and cluttered environments with real-time performance

    Real-time synthetic primate vision

    Get PDF
    corecore