39 research outputs found

    Imprecise Prior for Imprecise Inference on Poisson Sampling Model

    Get PDF
    Prevalence is a valuable epidemiological measure about the burden of disease in a community for planning health services; however, true prevalence is typically underestimated and there exists no reliable method of confirming the estimate of this prevalence in question. This thesis studies imprecise priors for the development of a statistical reasoning framework regarding this epidemiological decision making problem. The concept of imprecise probabilities introduced by Walley (1991) is adopted for the construction of this inferential framework in order to model prior ignorance and quantify the degree of imprecision associated with the inferential process. The study is restricted to the standard and zero-truncated Poisson sampling models that give an exponential family with a canonical log-link function because of the mechanism involved with the estimation of population size. A three-parameter exponential family of posteriors which includes the normal and log-gamma as limiting cases is introduced by applying normal priors on the canonical parameter of the Poisson sampling models. The canonical parameters simplify dealing with families of priors as Bayesian updating corresponds to a translation of the family in the canonical hyperparameter space. The canonical link function creates a linear relationship between regression coefficients of explanatory variables and the canonical parameters of the sampling distribution. Thus, normal priors on the regression coefficients induce normal priors on the canonical parameters leading to a higher-dimensional exponential family of posteriors whose limiting cases are again normal or log-gamma. All of these implementations are synthesized to build the ipeglim package (Lee, 2013) that provides a convenient method for characterizing imprecise probabilities and visualizing their translation, soft-linearity, and focusing behaviours. A characterization strategy for imprecise priors is introduced for instances when there exists a state of complete ignorance. The learning process of an individual intentional unit, the agreement process between several intentional units, and situations concerning prior-data conflict are graphically illustrated. Finally, the methodology is applied for re-analyzing the data collected from the epidemiological disease surveillance of three specific cases – Cholera epidemic (Dahiya, 1973), Down’s syndrome (Zelterman, 1988), and the female users of methamphetamine and heroin (B ̈ ohning, 2009)

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    Bayesian truncated Poisson regression with application to Dutch illegal immigrant data

    Get PDF
    This article presents a Bayesian approach to the regression analysis of truncated data, with a focus on zero-truncated counts from the Poisson distribution. The approach provides inference not only on the regression coefficients but also on the total sample size and the parameters of the covariate distribution. The theory is applied to some illegal immigrant data from The Netherlands. Several models are fitted with the aid of Markov chain Monte Carlo methods and assessed via posterior predictive p-values. Inferences are compared with those obtained elsewhere using other approaches

    Advances in Computational Social Science and Social Simulation

    Get PDF
    Aquesta conferència és la celebració conjunta de la "10th Artificial Economics Conference AE", la "10th Conference of the European Social Simulation Association ESSA" i la "1st Simulating the Past to Understand Human History SPUHH".Conferència organitzada pel Laboratory for Socio­-Historical Dynamics Simulation (LSDS-­UAB) de la Universitat Autònoma de Barcelona.Readers will find results of recent research on computational social science and social simulation economics, management, sociology,and history written by leading experts in the field. SOCIAL SIMULATION (former ESSA) conferences constitute annual events which serve as an international platform for the exchange of ideas and discussion of cutting edge research in the field of social simulations, both from the theoretical as well as applied perspective, and the 2014 edition benefits from the cross-fertilization of three different research communities into one single event. The volume consists of 122 articles, corresponding to most of the contributions to the conferences, in three different formats: short abstracts (presentation of work-in-progress research), posters (presentation of models and results), and full papers (presentation of social simulation research including results and discussion). The compilation is completed with indexing lists to help finding articles by title, author and thematic content. We are convinced that this book will serve interested readers as a useful compendium which presents in a nutshell the most recent advances at the frontiers of computational social sciences and social simulation researc
    corecore