82 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    Get PDF
    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    Visual Perception System for Aerial Manipulation: Methods and Implementations

    Get PDF
    La tecnología se evoluciona a gran velocidad y los sistemas autónomos están empezado a ser una realidad. Las compañías están demandando, cada vez más, soluciones robotizadas para mejorar la eficiencia de sus operaciones. Este también es el caso de los robots aéreos. Su capacidad única de moverse libremente por el aire los hace excelentes para muchas tareas que son tediosas o incluso peligrosas para operadores humanos. Hoy en día, la gran cantidad de sensores y drones comerciales los hace soluciones muy tentadoras. Sin embargo, todavía se requieren grandes esfuerzos de obra humana para customizarlos para cada tarea debido a la gran cantidad de posibles entornos, robots y misiones. Los investigadores diseñan diferentes algoritmos de visión, hardware y sensores para afrontar las diferentes tareas. Actualmente, el campo de la robótica manipuladora aérea está emergiendo con el objetivo de extender la cantidad de aplicaciones que estos pueden realizar. Estas pueden ser entre otras, inspección, mantenimiento o incluso operar válvulas u otras máquinas. Esta tesis presenta un sistema de manipulación aérea y un conjunto de algoritmos de percepción para la automatización de las tareas de manipulación aérea. El diseño completo del sistema es presentado y una serie de frameworks son presentados para facilitar el desarrollo de este tipo de operaciones. En primer lugar, la investigación relacionada con el análisis de objetos para manipulación y planificación de agarre considerando diferentes modelos de objetos es presentado. Dependiendo de estos modelos de objeto, se muestran diferentes algoritmos actuales de análisis de agarre y algoritmos de planificación para manipuladores simples y manipuladores duales. En Segundo lugar, el desarrollo de algoritmos de percepción para detección de objetos y estimación de su posicione es presentado. Estos permiten al sistema identificar objetos de cualquier tipo en cualquier escena para localizarlos para efectuar las tareas de manipulación. Estos algoritmos calculan la información necesaria para los análisis de manipulación descritos anteriormente. En tercer lugar. Se presentan algoritmos de visión para localizar el robot en el entorno al mismo tiempo que se elabora un mapa local, el cual es beneficioso para las tareas de manipulación. Estos mapas se enriquecen con información semántica obtenida en los algoritmos de detección. Por último, se presenta el desarrollo del hardware relacionado con la plataforma aérea, el cual incluye unos manipuladores de bajo peso y la invención de una herramienta para realizar tareas de contacto con superficies rígidas que sirve de estimador de la posición del robot. Todas las técnicas presentadas en esta tesis han sido validadas con extensiva experimentación en plataformas reales.Technology is growing fast, and autonomous systems are becoming a reality. Companies are increasingly demanding robotized solutions to improve the efficiency of their operations. It is also the case for aerial robots. Their unique capability of moving freely in the space makes them suitable for many tasks that are tedious and even dangerous for human operators. Nowadays, the vast amount of sensors and commercial drones makes them highly appealing. However, it is still required a strong manual effort to customize the existing solutions to each particular task due to the number of possible environments, robot designs and missions. Different vision algorithms, hardware devices and sensor setups are usually designed by researchers to tackle specific tasks. Currently, aerial manipulation is being intensively studied to allow aerial robots to extend the number of applications. These could be inspection, maintenance, or even operating valves or other machines. This thesis presents an aerial manipulation system and a set of perception algorithms for the automation aerial manipulation tasks. The complete design of the system is presented and modular frameworks are shown to facilitate the development of these kind of operations. At first, the research about object analysis for manipulation and grasp planning considering different object models is presented. Depend on the model of the objects, different state of art grasping analysis are reviewed and planning algorithms for both single and dual manipulators are shown. Secondly, the development of perception algorithms for object detection and pose estimation are presented. They allows the system to identify many kind of objects in any scene and locate them to perform manipulation tasks. These algorithms produce the necessary information for the manipulation analysis described in the previous paragraph. Thirdly, it is presented how to use vision to localize the robot in the environment. At the same time, local maps are created which can be beneficial for the manipulation tasks. These maps are are enhanced with semantic information from the perception algorithm mentioned above. At last, the thesis presents the development of the hardware of the aerial platform which includes the lightweight manipulators and the invention of a novel tool that allows the aerial robot to operate in contact with static objects. All the techniques presented in this thesis have been validated throughout extensive experimentation with real aerial robotic platforms

    Characterisation of a nuclear cave environment utilising an autonomous swarm of heterogeneous robots

    Get PDF
    As nuclear facilities come to the end of their operational lifetime, safe decommissioning becomes a more prevalent issue. In many such facilities there exist ‘nuclear caves’. These caves constitute areas that may have been entered infrequently, or even not at all, since the construction of the facility. Due to this, the topography and nature of the contents of these nuclear caves may be unknown in a number of critical aspects, such as the location of dangerous substances or significant physical blockages to movement around the cave. In order to aid safe decommissioning, autonomous robotic systems capable of characterising nuclear cave environments are desired. The research put forward in this thesis seeks to answer the question: is it possible to utilise a heterogeneous swarm of autonomous robots for the remote characterisation of a nuclear cave environment? This is achieved through examination of the three key components comprising a heterogeneous swarm: sensing, locomotion and control. It will be shown that a heterogeneous swarm is not only capable of performing this task, it is preferable to a homogeneous swarm. This is due to the increased sensory and locomotive capabilities, coupled with more efficient explorational prowess when compared to a homogeneous swarm
    corecore