3,895 research outputs found

    Bayesian Support Vector Regression for Traffic Speed Prediction with Error Bars

    Get PDF
    Abstract-Traffic prediction algorithms can help improve the performance of Intelligent Transportation Systems (ITS). To this end, ITS require algorithms with high prediction accuracy. For more robust performance, the traffic systems also require a measure of uncertainty associated with prediction data. Data driven algorithms such as Support Vector Regression (SVR) perform traffic prediction with overall high accuracy. However, they do not provide any information about the associated uncertainty. The prediction error can only be calculated once field data becomes available. Consequently, the applications which use prediction data, remain vulnerable to variations in prediction error. To overcome this issue, we propose Bayesian Support Vector Regression (BSVR). BSVR provides error bars along with the predicted traffic states. We perform sensitivity and specificity analysis to evaluate the efficiency of BSVR in anticipating variations in prediction error. We perform multi-horizon prediction and analyze the performance of BSVR for expressways as well as general road segments

    Assessing the Impact of Game Day Schedule and Opponents on Travel Patterns and Route Choice using Big Data Analytics

    Get PDF
    The transportation system is crucial for transferring people and goods from point A to point B. However, its reliability can be decreased by unanticipated congestion resulting from planned special events. For example, sporting events collect large crowds of people at specific venues on game days and disrupt normal traffic patterns. The goal of this study was to understand issues related to road traffic management during major sporting events by using widely available INRIX data to compare travel patterns and behaviors on game days against those on normal days. A comprehensive analysis was conducted on the impact of all Nebraska Cornhuskers football games over five years on traffic congestion on five major routes in Nebraska. We attempted to identify hotspots, the unusually high-risk zones in a spatiotemporal space containing traffic congestion that occur on almost all game days. For hotspot detection, we utilized a method called Multi-EigenSpot, which is able to detect multiple hotspots in a spatiotemporal space. With this algorithm, we were able to detect traffic hotspot clusters on the five chosen routes in Nebraska. After detecting the hotspots, we identified the factors affecting the sizes of hotspots and other parameters. The start time of the game and the Cornhuskers’ opponent for a given game are two important factors affecting the number of people coming to Lincoln, Nebraska, on game days. Finally, the Dynamic Bayesian Networks (DBN) approach was applied to forecast the start times and locations of hotspot clusters in 2018 with a weighted mean absolute percentage error (WMAPE) of 13.8%

    Imputation, modelling and optimal sampling design for digital camera data in recreational fisheries monitoring

    Get PDF
    Digital camera monitoring has evolved as an active application-oriented scheme to help address questions in areas such as fisheries, ecology, computer vision, artificial intelligence, and criminology. In recreational fisheries research, digital camera monitoring has become a viable option for probability-based survey methods, and is also used for corroborative and validation purposes. In comparison to onsite surveys (e.g. boat ramp surveys), digital cameras provide a cost-effective method of monitoring boating activity and fishing effort, including night-time fishing activities. However, there are challenges in the use of digital camera monitoring that need to be resolved. Notably, missing data problems and the cost of data interpretation are among the most pertinent. This study provides relevant statistical support to address these challenges of digital camera monitoring of boating effort, to improve its utility to enhance recreational fisheries management in Western Australia and elsewhere, with capacity to extend to other areas of application. Digital cameras can provide continuous recordings of boating and other recreational fishing activities; however, interruptions of camera operations can lead to significant gaps within the data. To fill these gaps, some climatic and other temporal classification variables were considered as predictors of boating effort (defined as number of powerboat launches and retrievals). A generalized linear mixed effect model built on fully-conditional specification multiple imputation framework was considered to fill in the gaps in the camera dataset. Specifically, the zero-inflated Poisson model was found to satisfactorily impute plausible values for missing observations for varied durations of outages in the digital camera monitoring data of recreational boating effort. Additional modelling options were explored to guide both short- and long-term forecasting of boating activity and to support management decisions in monitoring recreational fisheries. Autoregressive conditional Poisson (ACP) and integer-valued autoregressive (INAR) models were identified as useful time series models for predicting short-term behaviour of such data. In Western Australia, digital camera monitoring data that coincide with 12-month state-wide boat-based surveys (now conducted on a triennial basis) have been read but the periods between the surveys have not been read. A Bayesian regression framework was applied to describe the temporal distribution of recreational boating effort using climatic and temporally classified variables to help construct data for such missing periods. This can potentially provide a useful cost-saving alternative of obtaining continuous time series data on boating effort. Finally, data from digital camera monitoring are often manually interpreted and the associated cost can be substantial, especially if multiple sites are involved. Empirical support for low-level monitoring schemes for digital camera has been provided. It was found that manual interpretation of camera footage for 40% of the days within a year can be deemed as an adequate level of sampling effort to obtain unbiased, precise and accurate estimates to meet broad management objectives. A well-balanced low-level monitoring scheme will ultimately reduce the cost of manual interpretation and produce unbiased estimates of recreational fishing indexes from digital camera surveys

    Incident duration time prediction using a supervised topic modeling method

    Get PDF
    Precisely predicting the duration time of an incident is one of the most prominent components to implement proactive management strategies for traffic congestions caused by an incident. This thesis presents a novel method to predict incident duration time in a timely manner by using an emerging supervised topic modeling method. Based on Natural Language Processing (NLP) techniques, this thesis performs semantic text analyses with text-based incident dataset to train the model. The model is trained with actual 1,466 incident records collected by Korea Expressway Corporation from 2016-2019 by applying a Labeled Latent Dirichlet Allocation(L-LDA) approach. For the training, this thesis divides the incident duration times into two groups: shorter than 2-hour and longer than 2-hour, based on the MUTCD incident management guideline. The model is tested with randomly selected incident records that have not been used for the training. The results demonstrate that the overall prediction accuracies are approximately 74% and 82% for the incidents shorter and longer than 2-hour, respectively
    • …
    corecore