352 research outputs found

    Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)

    Get PDF
    In applications of Gaussian processes where quantification of uncertainty is of primary interest, it is necessary to accurately characterize the posterior distribution over covariance parameters. This paper proposes an adaptation of the Stochastic Gradient Langevin Dynamics algorithm to draw samples from the posterior distribution over covariance parameters with negligible bias and without the need to compute the marginal likelihood. In Gaussian process regression, this has the enormous advantage that stochastic gradients can be computed by solving linear systems only. A novel unbiased linear systems solver based on parallelizable covariance matrix-vector products is developed to accelerate the unbiased estimation of gradients. The results demonstrate the possibility to enable scalable and exact (in a Monte Carlo sense) quantification of uncertainty in Gaussian processes without imposing any special structure on the covariance or reducing the number of input vectors.Comment: 10 pages - paper accepted at ICML 201

    Scalable iterative methods for sampling from massive Gaussian random vectors

    Full text link
    Sampling from Gaussian Markov random fields (GMRFs), that is multivariate Gaussian ran- dom vectors that are parameterised by the inverse of their covariance matrix, is a fundamental problem in computational statistics. In this paper, we show how we can exploit arbitrarily accu- rate approximations to a GMRF to speed up Krylov subspace sampling methods. We also show that these methods can be used when computing the normalising constant of a large multivariate Gaussian distribution, which is needed for both any likelihood-based inference method. The method we derive is also applicable to other structured Gaussian random vectors and, in particu- lar, we show that when the precision matrix is a perturbation of a (block) circulant matrix, it is still possible to derive O(n log n) sampling schemes.Comment: 17 Pages, 4 Figure

    Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging

    Get PDF
    In der angewandten Statistik können Regressionsmodelle mit hochdimensionalen Koeffizienten auftreten, die sich nicht mit gewöhnlichen Computersystemen schätzen lassen. Dies betrifft unter anderem die Analyse digitaler Bilder unter Berücksichtigung räumlich-zeitlicher Abhängigkeiten, wie sie innerhalb der medizinisch-biologischen Forschung häufig vorkommen. In der vorliegenden Arbeit wird ein Verfahren formuliert, das in der Lage ist, Regressionsmodelle mit hochdimensionalen Koeffizienten und nicht-normalverteilten Zielgrößen unter moderaten Anforderungen an die benötigte Hardware zu schätzen. Hierzu wird zunächst im Rahmen strukturiert additiver Regressionsmodelle aufgezeigt, worin die Limitationen aktueller Inferenzansätze bei der Anwendung auf hochdimensionale Problemstellungen liegen, sowie Möglichkeiten diskutiert, diese zu umgehen. Darauf basierend wird ein Algorithmus formuliert, dessen Stärken und Schwächen anhand von Simulationsstudien analysiert werden. Darüber hinaus findet das Verfahren Anwendung in drei verschiedenen Bereichen der medizinisch-biologischen Bildgebung und zeigt dadurch, dass es ein vielversprechender Kandidat für die Beantwortung hochdimensionaler Fragestellungen ist.In applied statistics regression models with high-dimensional coefficients can occur which cannot be estimated using ordinary computers. Amongst others, this applies to the analysis of digital images taking spatio-temporal dependencies into account as they commonly occur within bio-medical research. In this thesis a procedure is formulated which allows to fit regression models with high-dimensional coefficients and non-normal response values requiring only moderate computational equipment. To this end, limitations of different inference strategies for structured additive regression models are demonstrated when applied to high-dimensional problems and possible solutions are discussed. Based thereon an algorithm is formulated whose strengths and weaknesses are subsequently analyzed using simulation studies. Furthermore, the procedure is applied to three different fields of bio-medical imaging from which can be concluded that the algorithm is a promising candidate for answering high-dimensional problems

    Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems using MCMC Methods

    Get PDF
    The resolution of many large-scale inverse problems using MCMC methods requires a step of drawing samples from a high dimensional Gaussian distribution. While direct Gaussian sampling techniques, such as those based on Cholesky factorization, induce an excessive numerical complexity and memory requirement, sequential coordinate sampling methods present a low rate of convergence. Based on the reversible jump Markov chain framework, this paper proposes an efficient Gaussian sampling algorithm having a reduced computation cost and memory usage. The main feature of the algorithm is to perform an approximate resolution of a linear system with a truncation level adjusted using a self-tuning adaptive scheme allowing to achieve the minimal computation cost. The connection between this algorithm and some existing strategies is discussed and its efficiency is illustrated on a linear inverse problem of image resolution enhancement.Comment: 20 pages, 10 figures, under review for journal publicatio
    corecore