398 research outputs found

    High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep Models

    Full text link
    Learning in deep models using Bayesian methods has generated significant attention recently. This is largely because of the feasibility of modern Bayesian methods to yield scalable learning and inference, while maintaining a measure of uncertainty in the model parameters. Stochastic gradient MCMC algorithms (SG-MCMC) are a family of diffusion-based sampling methods for large-scale Bayesian learning. In SG-MCMC, multivariate stochastic gradient thermostats (mSGNHT) augment each parameter of interest, with a momentum and a thermostat variable to maintain stationary distributions as target posterior distributions. As the number of variables in a continuous-time diffusion increases, its numerical approximation error becomes a practical bottleneck, so better use of a numerical integrator is desirable. To this end, we propose use of an efficient symmetric splitting integrator in mSGNHT, instead of the traditional Euler integrator. We demonstrate that the proposed scheme is more accurate, robust, and converges faster. These properties are demonstrated to be desirable in Bayesian deep learning. Extensive experiments on two canonical models and their deep extensions demonstrate that the proposed scheme improves general Bayesian posterior sampling, particularly for deep models.Comment: AAAI 201

    Hamiltonian ABC

    Full text link
    Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively low-dimensional problems. We introduce Hamiltonian ABC (HABC), a set of likelihood-free algorithms that apply recent advances in scaling Bayesian learning using Hamiltonian Monte Carlo (HMC) and stochastic gradients. We find that a small number forward simulations can effectively approximate the ABC gradient, allowing Hamiltonian dynamics to efficiently traverse parameter spaces. We also describe a new simple yet general approach of incorporating random seeds into the state of the Markov chain, further reducing the random walk behavior of HABC. We demonstrate HABC on several typical ABC problems, and show that HABC samples comparably to regular Bayesian inference using true gradients on a high-dimensional problem from machine learning.Comment: Submission to UAI 201

    Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo for Bayesian learning

    Get PDF
    We propose a new sampling method, the thermostat-assisted continuously-tempered Hamiltonian Monte Carlo, for Bayesian learning on large datasets and multimodal distributions. It simulates the Nos\'e-Hoover dynamics of a continuously-tempered Hamiltonian system built on the distribution of interest. A significant advantage of this method is that it is not only able to efficiently draw representative i.i.d. samples when the distribution contains multiple isolated modes, but capable of adaptively neutralising the noise arising from mini-batches and maintaining accurate sampling. While the properties of this method have been studied using synthetic distributions, experiments on three real datasets also demonstrated the gain of performance over several strong baselines with various types of neural networks plunged in

    A Survey on Bayesian Deep Learning

    Full text link
    A comprehensive artificial intelligence system needs to not only perceive the environment with different `senses' (e.g., seeing and hearing) but also infer the world's conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks such as visual object recognition and speech recognition using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, etc. Besides, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as Bayesian treatment of neural networks.Comment: To appear in ACM Computing Surveys (CSUR) 202
    • …
    corecore