92 research outputs found

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI

    Deep learning for clinical decision support in oncology

    Get PDF
    In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computertomographie (CT) zu einem unersetzbaren Werkzeug moderner Medizin geworden, welche eine zeitnahe, nicht-invasive Begutachtung von Organen und Geweben ermöglichen. Die Menge an anfallenden Daten ist dabei rapide gestiegen, allein innerhalb der letzten Jahre um den Faktor 15, und aktuell verantwortlich für 30 % des weltweiten Datenvolumens. Die Anzahl ausgebildeter Radiologen ist weitestgehend stabil, wodurch die medizinische Bildanalyse, angesiedelt zwischen Medizin und Ingenieurwissenschaften, zu einem schnell wachsenden Feld geworden ist. Eine erfolgreiche Anwendung verspricht Zeitersparnisse, und kann zu einer höheren diagnostischen Qualität beitragen. Viele Arbeiten fokussieren sich auf „Radiomics“, die Extraktion und Analyse von manuell konstruierten Features. Diese sind jedoch anfällig gegenüber externen Faktoren wie dem Bildgebungsprotokoll, woraus Implikationen für Reproduzierbarkeit und klinische Anwendbarkeit resultieren. In jüngster Zeit sind Methoden des „Deep Learning“ zu einer häufig verwendeten Lösung algorithmischer Problemstellungen geworden. Durch Anwendungen in Bereichen wie Robotik, Physik, Mathematik und Wirtschaft, wurde die Forschung im Bereich maschinellen Lernens wesentlich verändert. Ein Kriterium für den Erfolg stellt die Verfügbarkeit großer Datenmengen dar. Diese sind im medizinischen Bereich rar, da die Bilddaten strengen Anforderungen bezüglich Datenschutz und Datensicherheit unterliegen, und oft heterogene Qualität, sowie ungleichmäßige oder fehlerhafte Annotationen aufweisen, wodurch ein bedeutender Teil der Methoden keine Anwendung finden kann. Angesiedelt im Bereich onkologischer Bildgebung zeigt diese Arbeit Wege zur erfolgreichen Nutzung von Deep Learning für medizinische Bilddaten auf. Mittels neuer Methoden für klinisch relevante Anwendungen wie die Schätzung von Läsionswachtum, Überleben, und Entscheidungkonfidenz, sowie Meta-Learning, Klassifikator-Ensembling, und Entscheidungsvisualisierung, werden Wege zur Verbesserungen gegenüber State-of-the-Art-Algorithmen aufgezeigt, welche ein breites Anwendungsfeld haben. Hierdurch leistet die Arbeit einen wesentlichen Beitrag in Richtung einer klinischen Anwendung von Deep Learning, zielt auf eine verbesserte Diagnose, und damit letztlich eine verbesserte Gesundheitsversorgung insgesamt.Over the last decades, medical imaging methods, such as computed tomography (CT), have become an indispensable tool of modern medicine, allowing for a fast, non-invasive inspection of organs and tissue. Thus, the amount of acquired healthcare data has rapidly grown, increased 15-fold within the last years, and accounts for more than 30 % of the world's generated data volume. In contrast, the number of trained radiologists remains largely stable. Thus, medical image analysis, settled between medicine and engineering, has become a rapidly growing research field. Its successful application may result in remarkable time savings and lead to a significantly improved diagnostic performance. Many of the work within medical image analysis focuses on radiomics, i. e. the extraction and analysis of hand-crafted imaging features. Radiomics, however, has been shown to be highly sensitive to external factors, such as the acquisition protocol, having major implications for reproducibility and clinical applicability. Lately, deep learning has become one of the most employed methods for solving computational problems. With successful applications in diverse fields, such as robotics, physics, mathematics, and economy, deep learning has revolutionized the process of machine learning research. Having large amounts of training data is a key criterion for its successful application. These data, however, are rare within medicine, as medical imaging is subject to a variety of data security and data privacy regulations. Moreover, medical imaging data often suffer from heterogeneous quality, label imbalance, and label noise, rendering a considerable fraction of deep learning-based algorithms inapplicable. Settled in the field of CT oncology, this work addresses these issues, showing up ways to successfully handle medical imaging data using deep learning. It proposes novel methods for clinically relevant tasks, such as lesion growth and patient survival prediction, confidence estimation, meta-learning and classifier ensembling, and finally deep decision explanation, yielding superior performance in comparison to state-of-the-art approaches, and being applicable to a wide variety of applications. With this, the work contributes towards a clinical translation of deep learning-based algorithms, aiming for an improved diagnosis, and ultimately overall improved patient healthcare

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Data efficient deep learning for medical image analysis: A survey

    Full text link
    The rapid evolution of deep learning has significantly advanced the field of medical image analysis. However, despite these achievements, the further enhancement of deep learning models for medical image analysis faces a significant challenge due to the scarcity of large, well-annotated datasets. To address this issue, recent years have witnessed a growing emphasis on the development of data-efficient deep learning methods. This paper conducts a thorough review of data-efficient deep learning methods for medical image analysis. To this end, we categorize these methods based on the level of supervision they rely on, encompassing categories such as no supervision, inexact supervision, incomplete supervision, inaccurate supervision, and only limited supervision. We further divide these categories into finer subcategories. For example, we categorize inexact supervision into multiple instance learning and learning with weak annotations. Similarly, we categorize incomplete supervision into semi-supervised learning, active learning, and domain-adaptive learning and so on. Furthermore, we systematically summarize commonly used datasets for data efficient deep learning in medical image analysis and investigate future research directions to conclude this survey.Comment: Under Revie

    Artificial intelligence in gastroenterology: a state-of-the-art review

    Get PDF
    The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett's esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    MEDICAL MACHINE INTELLIGENCE: DATA-EFFICIENCY AND KNOWLEDGE-AWARENESS

    Get PDF
    Traditional clinician diagnosis requires massive manual labor from experienced doctors, which is time-consuming and costly. Computer-aided systems are therefore proposed to reduce doctors’ efforts by using machines to automatically make diagnosis and treatment recommendations. The recent success in deep learning has largely advanced the field of computer-aided diagnosis by offering an avenue to deliver automated medical image analysis. Despite such progress, there remain several challenges towards medical machine intelligence, such as unsatisfactory performance regarding challenging small targets, insufficient training data, high annotation cost, the lack of domain-specific knowledge, etc. These challenges cultivate the need for developing data-efficient and knowledge-aware deep learning techniques which can generalize to different medical tasks without requiring intensive manual labeling efforts, and incorporate domain-specific knowledge in the learning process. In this thesis, we rethink the current progress of deep learning in medical image analysis, with a focus on the aforementioned challenges, and present different data-efficient and knowledge-aware deep learning approaches to address them accordingly. Firstly, we introduce coarse-to-fine mechanisms which use the prediction from the first (coarse) stage to shrink the input region for the second (fine) stage, to enhance the model performance especially for segmenting small challenging structures, such as the pancreas which occupies only a very small fraction (e.g., < 0.5%) of the entire CT volume. The method achieved the state-of-the-art result on the NIH pancreas segmentation dataset. Further extensions also demonstrated effectiveness for segmenting neoplasms such as pancreatic cysts or multiple organs. Secondly, we present a semi-supervised learning framework for medical image segmentation by leveraging both limited labeled data and abundant unlabeled data. Our learning method encourages the segmentation output to be consistent for the same input under different viewing conditions. More importantly, the outputs from different viewing directions are fused altogether to improve the quality of the target, which further enhances the overall performance. The comparison with fully-supervised methods on multi-organ segmentation confirms the effectiveness of this method. Thirdly, we discuss how to incorporate knowledge priors for multi-organ segmentation. Noticing that the abdominal organ sizes exhibit similar distributions across different cohorts, we propose to explicitly incorporate anatomical priors on abdominal organ sizes, guiding the training process with domain-specific knowledge. The approach achieves 84.97% on the MICCAI 2015 challenge “Multi-Atlas Labeling Beyond the Cranial Vault”, which significantly outperforms previous state-of-the-art even using fewer annotations. Lastly, by rethinking how radiologists interpret medical images, we identify one limitation for existing deep-learning-based works on detecting pancreatic ductal adenocarcinoma is the lack of knowledge integration from multi-phase images. Thereby, we introduce a dual-path network where different paths are connected for multi-phase information exchange, and an additional loss is added for removing view divergence. By effectively incorporating multi-phase information, the presented method shows superior performance than prior arts on this matter

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis
    • …
    corecore