57 research outputs found

    Bayesian robust linear transceiver design for dual-hop amplify-and-forward MIMO relay systems

    Get PDF
    In this paper, we address the robust linear transceiver design for dual-hop amplify-and-forward (AF) MIMO relay systems, where both transmitters and receivers have imperfect channel state information (CSI). With the statistics of channel estimation errors in the two hops being Gaussian, we formulate the robust linear-minimum-mean-square-error (LMMSE) transceiver design problem using the Bayesian framework, and derive a closed-form solution. Simulation results show that the proposed algorithm reduces the sensitivity of the relay system to channel estimation errors, and performs better than the algorithm using estimated channel only.published_or_final_versionThe IEEE Global Telecommunications Conference (GLOBECOM 2009), Honolulu, HI., 30 November-4 December 2009. In Proceedings of GLOBECOM, 2009, p. 1-

    Joint robust weighted LMMSE transceiver design for dual-hop AF multiple-antenna relay systems

    Get PDF
    In this paper, joint transceiver design for dual-hop amplify-and-forward (AF) MIMO relay systems with Gaussian distributed channel estimation errors in both two hops is investigated. Due to the fact that various linear transceiver designs can be transformed to a weighted linear minimum mean-square-error (LMMSE) transceiver design with specific weighting matrices, weighted mean square error (MSE) is chosen as the performance metric. Precoder matrix at source, forwarding matrix at relay and equalizer matrix at destination are jointly designed with channel estimation errors taken care of by Bayesian philosophy. Several existing algorithms are found to be special cases of the proposed solution. The performance advantage of the proposed robust design is demonstrated by the simulation results. © 2011 IEEE.published_or_final_versionThe 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011), Beijing, China, 5-9 December 2011. In Globecom. IEEE Conference and Exhibition, 2011, p. 1-

    Robust Beamforming for Amplify-and-Forward MIMO Relay Systems Based on Quadratic Matrix Programming

    Get PDF
    In this paper, robust transceiver design based on minimum-mean-square-error (MMSE) criterion for dual-hop amplify-and-forward MIMO relay systems is investigated. The channel estimation errors are modeled as Gaussian random variables, and then the effect are incorporated into the robust transceiver based on the Bayesian framework. An iterative algorithm is proposed to jointly design the precoder at the source, the forward matrix at the relay and the equalizer at the destination, and the joint design problem can be efficiently solved by quadratic matrix programming (QMP).Comment: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'2010), U.S.

    A General Robust Linear Transceiver Design for Multi-Hop Amplify-and-Forward MIMO Relaying Systems

    Get PDF
    In this paper, linear transceiver design for multi-hop amplify-and-forward (AF) multiple-input multiple-out (MIMO) relaying systems with Gaussian distributed channel estimation errors is investigated. Commonly used transceiver design criteria including weighted mean-square-error (MSE) minimization, capacity maximization, worst-MSE/MAX-MSE minimization and weighted sum-rate maximization, are considered and unified into a single matrix-variate optimization problem. A general robust design algorithm is proposed to solve the unified problem. Specifically, by exploiting majorization theory and properties of matrix-variate functions, the optimal structure of the robust transceiver is derived when either the covariance matrix of channel estimation errors seen from the transmitter side or the corresponding covariance matrix seen from the receiver side is proportional to an identity matrix. Based on the optimal structure, the original transceiver design problems are reduced to much simpler problems with only scalar variables whose solutions are readily obtained by iterative water-filling algorithm. A number of existing transceiver design algorithms are found to be special cases of the proposed solution. The differences between our work and the existing related work are also discussed in detail. The performance advantages of the proposed robust designs are demonstrated by simulation results.Comment: 30 pages, 7 figures, Accepted by IEEE Transactions on Signal Processin

    Robust joint design of linear relay precoder and destination equalizer for dual-hop amplify-and-forward MIMO relay systems

    Get PDF
    This paper addresses the problem of robust linear relay precoder and destination equalizer design for a dual-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay system, with Gaussian random channel uncertainties in both hops. By taking the channel uncertainties into account, two robust design algorithms are proposed to minimize the mean-square error (MSE) of the output signal at the destination. One is an iterative algorithm with its convergence proved analytically. The other is an approximated closed-form solution with much lower complexity than the iterative algorithm. Although the closed-form solution involves a minor relaxation for the general case, when the column covariance matrix of the channel estimation error at the second hop is proportional to identity matrix, no relaxation is needed and the proposed closed-form solution is the optimal solution. Simulation results show that the proposed algorithms reduce the sensitivity of the AF MIMO relay systems to channel estimation errors, and perform better than the algorithm using estimated channels only. Furthermore, the closed-form solution provides a comparable performance to that of the iterative algorithm. © 2006 IEEE.published_or_final_versio

    Maximum mutual information design for amplify-and-forward multi-hop MIMO relaying systems under channel uncertainties

    Get PDF
    Conference Theme: PHY and FundamentalsIn this paper, we investigate maximum mutual information design for multi-hop amplify-and-forward (AF) multiple-input multiple-out (MIMO) relaying systems with imperfect channel state information, i.e., Gaussian distributed channel estimation errors. The robust design is formulated as a matrix-variate optimization problem. Exploiting the elegant properties of Majorization theory and matrix-variate functions, the optimal structures of the forwarding matrices at the relays and precoding matrix at the source are derived. Based on the derived structures, a water-filling solution is proposed to solve the remaining unknown variables. © 2012 IEEE.published_or_final_versionThe 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 1-4 April 2012. In IEEE Wireless Communications and Networking Conference Proceedings, 2012, p. 781-78

    Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems

    Get PDF
    Conference Theme: PHY and FundamentalsIn this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial inter-symbol interference and then a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. Based on the elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the optimization problem is greatly simplified and can be efficiently solved. Finally, the performance advantage of the proposed robust design is assessed by simulation results. © 2012 IEEE.published_or_final_versionThe 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 1-4 April 2012. In IEEE Wireless Communications and Networking Conference Proceedings, 2012, p. 753-75

    Linear transceiver design for amplify-and-forward MIMO relay systems under channel uncertainties

    Get PDF
    Proceedings of the IEEE Wireless Communications and Networking Conference, 2010, p. 1-6In this paper, robust joint design of linear relay precoders and destination equalizers for amplify-and-forward (AF) MIMO relay systems under Gaussian channel uncertainties is investigated. After incorporating the channel uncertainties into the robust design based on the Bayesian framework, a closed-form solution is derived to minimize the mean-square-error (MSE) of the received signal at the destination. The effectiveness of the proposed robust transceiver is verified by simulations. ©2010 IEEE.published_or_final_versionThe IEEE Wireless Communications and Networking Conference (WCNC), Sydney, Australia, 18-21 April 2010. In Proceedings of WCNC, 2010, p. 1-

    Transceiver Design for Dual-Hop Non-regenerative MIMO-OFDM Relay Systems Under Channel Uncertainties

    Get PDF
    In this paper, linear transceiver design for dual-hop non-regenerative (amplify-and-forward (AF)) MIMO-OFDM systems under channel estimation errors is investigated. Second order moments of channel estimation errors in the two hops are first deduced. Then based on the Bayesian framework, joint design of linear forwarding matrix at the relay and equalizer at the destination under channel estimation errors is proposed to minimize the total mean-square-error (MSE) of the output signal at the destination. The optimal designs for both correlated and uncorrelated channel estimation errors are considered. The relationship with existing algorithms is also disclosed. Moreover, this design is extended to the joint design involving source precoder design. Simulation results show that the proposed design outperforms the design based on estimated channel state information only.Comment: 30 pages, 6 figures, IEEE Transactions on Signal Processing, The Final Versio

    Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems

    Get PDF
    In this paper, robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems is investigated. At source node, THP is adopted to mitigate the spatial intersymbol interference. However, due to its nonlinear nature, THP is very sensitive to channel estimation errors. In order to reduce the effects of channel estimation errors, a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.Comment: IEEE Journal on Selected Areas in Communications - Special Issue on Theories and Methods for Advanced Wireless Relays The final version and several typos have been correcte
    • …
    corecore