370 research outputs found

    Bayesian Policy Gradients via Alpha Divergence Dropout Inference

    Full text link
    Policy gradient methods have had great success in solving continuous control tasks, yet the stochastic nature of such problems makes deterministic value estimation difficult. We propose an approach which instead estimates a distribution by fitting the value function with a Bayesian Neural Network. We optimize an α\alpha-divergence objective with Bayesian dropout approximation to learn and estimate this distribution. We show that using the Monte Carlo posterior mean of the Bayesian value function distribution, rather than a deterministic network, improves stability and performance of policy gradient methods in continuous control MuJoCo simulations.Comment: Accepted to Bayesian Deep Learning Workshop at NIPS 201

    Variational implicit processes

    Get PDF
    We introduce the implicit processes (IPs), a stochastic process that places implicitly defined multivariate distributions over any finite collections of random variables. IPs are therefore highly flexible implicit priors over functions, with examples including data simulators, Bayesian neural networks and non-linear transformations of stochastic processes. A novel and efficient approximate inference algorithm for IPs, namely the variational implicit processes (VIPs), is derived using generalised wake-sleep updates. This method returns simple update equations and allows scalable hyper-parameter learning with stochastic optimization. Experiments show that VIPs return better uncertainty estimates and lower errors over existing inference methods for challenging models such as Bayesian neural networks, and Gaussian processes
    corecore