178 research outputs found

    Communications in Mobile Wireless Networks: A Finite Time-Horizon Viewpoint

    No full text
    In mobile wireless networks (MWNs), short-term communications carry two key features: 1) Different from communications over a large time window where the performance is governed by the long-term average effect, the short-term communications in MWNs are sensitive to the instantaneous location and channel condition caused by node mobility. 2) The short-term communications in MWNs have the finite blocklength coding effect which means it is not amenable to the well-known Shannon's capacity formulation. To deal with the short-term communications in MWNs, this thesis focuses on three main issues: how the node mobility affects the instantaneous interference, how to reduce the uncertainty in the locations of mobile users, and what is the maximal throughput of a multi-user network over a short time-horizon. First, we study interference prediction in MWNs by proposing and using a general-order linear model for node mobility. The proposed mobility model can well approximate node dynamics of practical MWNs. Unlike previous studies on interference statistics, we are able through this model to give a best estimate of the time-varying interference at any time rather than long-term average effects. In particular, we propose a compound Gaussian point process functional (CGPPF) in a general framework to obtain analytical results on the mean value and moment-generating function of the interference prediction. Second, to reduce the uncertainty in nodal locations, the cooperative localization problem for mobile nodes is studied. In contrast to previous works, which highly rely on the synchronized time-slotted systems, this cooperative localization framework we establish does not need any synchronization for the communication links and measurement processes in the entire wireless network. To solve the cooperative localization problem in a distributed manner, we first propose the centralized localization algorithm based on the global information, and use it as the benchmark. Then, we rigorously prove when a localization estimation with partial information has a small performance gap from the one with global information. Finally, by applying this result at each node, the distributed prior-cut algorithm is designed to solve this asynchronous localization problem. Finally, we study the throughput region of any MWN consisting of multiple transmitter-receiver pairs where interference is treated as noise. Unlike the infinite-horizon throughput region, which is simply the convex hull of the throughput region of one time slot, the finite-horizon throughput region is generally non-convex. Instead of directly characterizing all achievable rate-tuples in the finite-horizon throughput region, we propose a metric termed the rate margin, which not only determines whether any given rate-tuple is within the throughput region (i.e., achievable or unachievable), but also tells the amount of scaling that can be done to the given achievable (unachievable) rate-tuple such that the resulting rate-tuple is still within (brought back into) the throughput region. This thesis advances our understanding in communications in MWNs from a finite-time horizon viewpoint. It establishes new frameworks for tracking the instantaneous behaviors, such as interference and nodal location, of MWNs. It also reveals the fundamental limits on short-term communications of a multi-user mobile network, which sheds light on communications with low latency

    The fusion and integration of virtual sensors

    Get PDF
    There are numerous sensors from which to choose when designing a mobile robot: ultrasonic, infrared, radar, or laser range finders, video, collision detectors, or beacon based systems such as the Global Positioning System. In order to meet the need for reliability, accuracy, and fault tolerance, mobile robot designers often place multiple sensors on the same platform, or combine sensor data from multiple platforms. The combination of the data from multiple sensors to improve reliability, accuracy, and fault tolerance is termed Sensor Fusion.;The types of robotic sensors are as varied as the properties of the environment that need to be sensed. to reduce the complexity of system software, Roboticists have found it highly desirable to adopt a common interface between each type of sensor and the system responsible for fusing the information. The process of abstracting the essential properties of a sensor is called Sensor Virtualization.;Sensor virtualization to date has focused on abstracting the properties shared by sensors of the same type. The approach taken by T. Henderson is simply to expose to the fusion system only the data from the sensor, along with a textual label describing the sensor. We extend Henderson\u27s work in the following manner. First, we encapsulate both the fusion algorithm and the interface layer in the virtual sensor. This allows us to build multi-tiered virtual sensor hierarchies. Secondly, we show how common fusion algorithms can be encapsulated in the virtual sensor, facilitating the integration and replacement of both physical and virtual sensors. Finally, we provide a physical proof of concept using monostatic sonars, vector sonars, and a laser range-finder

    Stereo-Based Tracking-by-Multiple Hypotheses Framework for Multiple Vehicle Detection and Tracking

    Get PDF
    In this paper, we present a tracking-by-multiple hypotheses framework to detect and track multiple vehicles accurately and precisely. The tracking-bymultiple hypotheses framework consists of obstacle detection, vehicle recognition, visual tracking, global position tracking, data association and particle filtering. The multiple hypotheses are from obstacle detection, vehicle recognition and visual tracking. The obstacle detection detects all the obstacles on the road. The vehicle recognition classifies the detected obstacles as vehicles or non-vehicles. 3D feature-based visual tracking estimates the current target state using the previous target state. The multiple hypotheses should be linked to corresponding tracks to update the target state. The hierarchical data association method assigns multiple tracks to the correct hypotheses with multiple similarity functions. In the particle filter framework, the target state is updated using the Gaussian motion model and the observation model with associated multiple hypotheses. The experimental results demonstrate that the proposed method enhances the accuracy and precision of the region of interest. © 2013 Lim et al.1

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images

    On unifying sparsity and geometry for image-based 3D scene representation

    Get PDF
    Demand has emerged for next generation visual technologies that go beyond conventional 2D imaging. Such technologies should capture and communicate all perceptually relevant three-dimensional information about an environment to a distant observer, providing a satisfying, immersive experience. Camera networks offer a low cost solution to the acquisition of 3D visual information, by capturing multi-view images from different viewpoints. However, the camera's representation of the data is not ideal for common tasks such as data compression or 3D scene analysis, as it does not make the 3D scene geometry explicit. Image-based scene representations fundamentally require a multi-view image model that facilitates extraction of underlying geometrical relationships between the cameras and scene components. Developing new, efficient multi-view image models is thus one of the major challenges in image-based 3D scene representation methods. This dissertation focuses on defining and exploiting a new method for multi-view image representation, from which the 3D geometry information is easily extractable, and which is additionally highly compressible. The method is based on sparse image representation using an overcomplete dictionary of geometric features, where a single image is represented as a linear combination of few fundamental image structure features (edges for example). We construct the dictionary by applying a unitary operator to an analytic function, which introduces a composition of geometric transforms (translations, rotation and anisotropic scaling) to that function. The advantage of this approach is that the features across multiple views can be related with a single composition of transforms. We then establish a connection between image components and scene geometry by defining the transforms that satisfy the multi-view geometry constraint, and obtain a new geometric multi-view correlation model. We first address the construction of dictionaries for images acquired by omnidirectional cameras, which are particularly convenient for scene representation due to their wide field of view. Since most omnidirectional images can be uniquely mapped to spherical images, we form a dictionary by applying motions on the sphere, rotations, and anisotropic scaling to a function that lives on the sphere. We have used this dictionary and a sparse approximation algorithm, Matching Pursuit, for compression of omnidirectional images, and additionally for coding 3D objects represented as spherical signals. Both methods offer better rate-distortion performance than state of the art schemes at low bit rates. The novel multi-view representation method and the dictionary on the sphere are then exploited for the design of a distributed coding method for multi-view omnidirectional images. In a distributed scenario, cameras compress acquired images without communicating with each other. Using a reliable model of correlation between views, distributed coding can achieve higher compression ratios than independent compression of each image. However, the lack of a proper model has been an obstacle for distributed coding in camera networks for many years. We propose to use our geometric correlation model for distributed multi-view image coding with side information. The encoder employs a coset coding strategy, developed by dictionary partitioning based on atom shape similarity and multi-view geometry constraints. Our method results in significant rate savings compared to independent coding. An additional contribution of the proposed correlation model is that it gives information about the scene geometry, leading to a new camera pose estimation method using an extremely small amount of data from each camera. Finally, we develop a method for learning stereo visual dictionaries based on the new multi-view image model. Although dictionary learning for still images has received a lot of attention recently, dictionary learning for stereo images has been investigated only sparingly. Our method maximizes the likelihood that a set of natural stereo images is efficiently represented with selected stereo dictionaries, where the multi-view geometry constraint is included in the probabilistic modeling. Experimental results demonstrate that including the geometric constraints in learning leads to stereo dictionaries that give both better distributed stereo matching and approximation properties than randomly selected dictionaries. We show that learning dictionaries for optimal scene representation based on the novel correlation model improves the camera pose estimation and that it can be beneficial for distributed coding

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    DEEP LEARNING FOR IMAGE RESTORATION AND ROBOTIC VISION

    Get PDF
    Traditional model-based approach requires the formulation of mathematical model, and the model often has limited performance. The quality of an image may degrade due to a variety of reasons: It could be the context of scene is affected by weather conditions such as haze, rain, and snow; It\u27s also possible that there is some noise generated during image processing/transmission (e.g., artifacts generated during compression.). The goal of image restoration is to restore the image back to desirable quality both subjectively and objectively. Agricultural robotics is gaining interest these days since most agricultural works are lengthy and repetitive. Computer vision is crucial to robots especially the autonomous ones. However, it is challenging to have a precise mathematical model to describe the aforementioned problems. Compared with traditional approach, learning-based approach has an edge since it does not require any model to describe the problem. Moreover, learning-based approach now has the best-in-class performance on most of the vision problems such as image dehazing, super-resolution, and image recognition. In this dissertation, we address the problem of image restoration and robotic vision with deep learning. These two problems are highly related with each other from a unique network architecture perspective: It is essential to select appropriate networks when dealing with different problems. Specifically, we solve the problems of single image dehazing, High Efficiency Video Coding (HEVC) loop filtering and super-resolution, and computer vision for an autonomous robot. Our technical contributions are threefold: First, we propose to reformulate haze as a signal-dependent noise which allows us to uncover it by learning a structural residual. Based on our novel reformulation, we solve dehazing with recursive deep residual network and generative adversarial network which emphasizes on objective and perceptual quality, respectively. Second, we replace traditional filters in HEVC with a Convolutional Neural Network (CNN) filter. We show that our CNN filter could achieve 7% BD-rate saving when compared with traditional filters such as bilateral and deblocking filter. We also propose to incorporate a multi-scale CNN super-resolution module into HEVC. Such post-processing module could improve visual quality under extremely low bandwidth. Third, a transfer learning technique is implemented to support vision and autonomous decision making of a precision pollination robot. Good experimental results are reported with real-world data
    corecore