114,436 research outputs found

    Kernels over Sets of Finite Sets using RKHS Embeddings, with Application to Bayesian (Combinatorial) Optimization

    Full text link
    We focus on kernel methods for set-valued inputs and their application to Bayesian set optimization, notably combinatorial optimization. We investigate two classes of set kernels that both rely on Reproducing Kernel Hilbert Space embeddings, namely the ``Double Sum'' (DS) kernels recently considered in Bayesian set optimization, and a class introduced here called ``Deep Embedding'' (DE) kernels that essentially consists in applying a radial kernel on Hilbert space on top of the canonical distance induced by another kernel such as a DS kernel. We establish in particular that while DS kernels typically suffer from a lack of strict positive definiteness, vast subclasses of DE kernels built upon DS kernels do possess this property, enabling in turn combinatorial optimization without requiring to introduce a jitter parameter. Proofs of theoretical results about considered kernels are complemented by a few practicalities regarding hyperparameter fitting. We furthermore demonstrate the applicability of our approach in prediction and optimization tasks, relying both on toy examples and on two test cases from mechanical engineering and hydrogeology, respectively. Experimental results highlight the applicability and compared merits of the considered approaches while opening new perspectives in prediction and sequential design with set inputs

    Deep Kernels for Optimizing Locomotion Controllers

    Full text link
    Sample efficiency is important when optimizing parameters of locomotion controllers, since hardware experiments are time consuming and expensive. Bayesian Optimization, a sample-efficient optimization framework, has recently been widely applied to address this problem, but further improvements in sample efficiency are needed for practical applicability to real-world robots and high-dimensional controllers. To address this, prior work has proposed using domain expertise for constructing custom distance metrics for locomotion. In this work we show how to learn such a distance metric automatically. We use a neural network to learn an informed distance metric from data obtained in high-fidelity simulations. We conduct experiments on two different controllers and robot architectures. First, we demonstrate improvement in sample efficiency when optimizing a 5-dimensional controller on the ATRIAS robot hardware. We then conduct simulation experiments to optimize a 16-dimensional controller for a 7-link robot model and obtain significant improvements even when optimizing in perturbed environments. This demonstrates that our approach is able to enhance sample efficiency for two different controllers, hence is a fitting candidate for further experiments on hardware in the future.Comment: (Rika Antonova and Akshara Rai contributed equally
    • …
    corecore