16,650 research outputs found

    An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization

    Get PDF
    The aim of this paper is to provide some theoretical understanding of quasi-Bayesian aggregation methods non-negative matrix factorization. We derive an oracle inequality for an aggregated estimator. This result holds for a very general class of prior distributions and shows how the prior affects the rate of convergence.Comment: This is the corrected version of the published paper P. Alquier, B. Guedj, An Oracle Inequality for Quasi-Bayesian Non-negative Matrix Factorization, Mathematical Methods of Statistics, 2017, vol. 26, no. 1, pp. 55-67. Since then Arnak Dalalyan (ENSAE) found a mistake in the proofs. We fixed the mistake at the price of a slightly different logarithmic term in the boun

    Learning latent features with infinite non-negative binary matrix tri-factorization

    Get PDF
    Non-negative Matrix Factorization (NMF) has been widely exploited to learn latent features from data. However, previous NMF models often assume a fixed number of features, saypfeatures, wherepis simply searched by experiments. Moreover, it is even difficult to learn binary features, since binary matrix involves more challenging optimization problems. In this paper, we propose a new Bayesian model called infinite non-negative binary matrix tri-factorizations model (iNBMT), capable of learning automatically the latent binary features as well as feature number based on Indian Buffet Process (IBP). Moreover, iNBMT engages a tri-factorization process that decomposes a nonnegative matrix into the product of three components including two binary matrices and a non-negative real matrix. Compared with traditional bi-factorization, the tri-factorization can better reveal the latent structures among items (samples) and attributes (features). Specifically, we impose an IBP prior on the two infinite binary matrices while a truncated Gaussian distribution is assumed on the weight matrix. To optimize the model, we develop an efficient modified maximization-expectation algorithm (ME-algorithm), with the iteration complexity one order lower than another recently-proposed Maximization-Expectation-IBP model[9]. We present the model definition, detail the optimization, and finally conduct a series of experiments. Experimental results demonstrate that our proposed iNBMT model significantly outperforms the other comparison algorithms in both synthetic and real data

    Unsupervised Bayesian linear unmixing of gene expression microarrays

    Get PDF
    Background: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Results: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. Conclusions: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor
    • 

    corecore