787 research outputs found

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis

    Get PDF
    Factor analysis aims to determine latent factors, or traits, which summarize a given data set. Inter-battery factor analysis extends this notion to multiple views of the data. In this paper we show how a nonlinear, nonparametric version of these models can be recovered through the Gaussian process latent variable model. This gives us a flexible formalism for multi-view learning where the latent variables can be used both for exploratory purposes and for learning representations that enable efficient inference for ambiguous estimation tasks. Learning is performed in a Bayesian manner through the formulation of a variational compression scheme which gives a rigorous lower bound on the log likelihood. Our Bayesian framework provides strong regularization during training, allowing the structure of the latent space to be determined efficiently and automatically. We demonstrate this by producing the first (to our knowledge) published results of learning from dozens of views, even when data is scarce. We further show experimental results on several different types of multi-view data sets and for different kinds of tasks, including exploratory data analysis, generation, ambiguity modelling through latent priors and classification.Comment: 49 pages including appendi

    Computational Mirrors: Blind Inverse Light Transport by Deep Matrix Factorization

    Full text link
    We recover a video of the motion taking place in a hidden scene by observing changes in indirect illumination in a nearby uncalibrated visible region. We solve this problem by factoring the observed video into a matrix product between the unknown hidden scene video and an unknown light transport matrix. This task is extremely ill-posed, as any non-negative factorization will satisfy the data. Inspired by recent work on the Deep Image Prior, we parameterize the factor matrices using randomly initialized convolutional neural networks trained in a one-off manner, and show that this results in decompositions that reflect the true motion in the hidden scene.Comment: 14 pages, 5 figures, Advances in Neural Information Processing Systems 201

    Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with Gaussian Processes

    Full text link
    Monte Carlo methods have become increasingly relevant for control of non-differentiable systems, approximate dynamics models and learning from data. These methods scale to high-dimensional spaces and are effective at the non-convex optimizations often seen in robot learning. We look at sample-based methods from the perspective of inference-based control, specifically posterior policy iteration. From this perspective, we highlight how Gaussian noise priors produce rough control actions that are unsuitable for physical robot deployment. Considering smoother Gaussian process priors, as used in episodic reinforcement learning and motion planning, we demonstrate how smoother model predictive control can be achieved using online sequential inference. This inference is realized through an efficient factorization of the action distribution and a novel means of optimizing the likelihood temperature to improve importance sampling accuracy. We evaluate this approach on several high-dimensional robot control tasks, matching the sample efficiency of prior heuristic methods while also ensuring smoothness. Simulation results can be seen at https://monte-carlo-ppi.github.io/.Comment: 43 pages, 37 figures. Conference on Robot Learning 202

    Incorporating prior information in nonnegative matrix factorization for audio source separation

    Get PDF
    In this work, we propose solutions to the problem of audio source separation from a single recording. The audio source signals can be speech, music or any other audio signals. We assume training data for the individual source signals that are present in the mixed signal are available. The training data are used to build a representative model for each source. In most cases, these models are sets of basis vectors in magnitude or power spectral domain. The proposed algorithms basically depend on decomposing the spectrogram of the mixed signal with the trained basis models for all observed sources in the mixed signal. Nonnegative matrix factorization (NMF) is used to train the basis models for the source signals. NMF is then used to decompose the mixed signal spectrogram as a weighted linear combination of the trained basis vectors for each observed source in the mixed signal. After decomposing the mixed signal, spectral masks are built and used to reconstruct the source signals. In this thesis, we improve the performance of NMF for source separation by incorporating more constraints and prior information related to the source signals to the NMF decomposition results. The NMF decomposition weights are encouraged to satisfy some prior information that is related to the nature of the source signals. The priors are modeled using Gaussian mixture models or hidden Markov models. These priors basically represent valid weight combination sequences that the basis vectors can receive for a certain type of source signal. The prior models are incorporated with the NMF cost function using either log-likelihood or minimum mean squared error estimation (MMSE). We also incorporate the prior information as a post processing. We incorporate the smoothness prior on the NMF solutions by using post smoothing processing. We also introduce post enhancement using MMSE estimation to obtain better separation for the source signals. In this thesis, we also improve the NMF training for the basis models. In cases when enough training data are not available, we introduce two di erent adaptation methods for the trained basis to better t the sources in the mixed signal. We also improve the training procedures for the sources by learning more discriminative dictionaries for the source signals. In addition, to consider a larger context in the models, we concatenate neighboring spectra together and train basis sets from them instead of a single frame which makes it possible to directly model the relation between consequent spectral frames. Experimental results show that the proposed approaches improve the performance of using NMF in source separation applications
    corecore