303 research outputs found

    Using primary afferent neural activity for predicting limb kinematics in cat

    Get PDF
    Kinematic state feedback is important for neuroprostheses to generate stable and adaptive movements of an extremity. State information, represented in the firing rates of populations of primary afferent neurons, can be recorded at the level of the dorsal root ganglia (DRG). Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic state of the hind limb using reverse regression. Although accurate decoding results were attained, these methods did not make efficient use of the information embedded in the firing rates of the neural population. This dissertation proposes new methods for decoding limb kinematics from primary afferent firing rates. We present decoding results based on state-space modeling, and show that it is a more principled and more efficient method for decoding the firing rates in an ensemble of primary afferent neurons. In particular, we show that we can extract confounded information from neurons that respond to multiple kinematic parameters, and that including velocity components in the firing rate models significantly increases the accuracy of the decoded trajectory. This thesis further explores the feasibility of decoding primary afferent firing rates in the presence of stimulation artifact generated during functional electrical stimulation. We show that kinematic information extracted from the firing rates of primary afferent neurons can be used in a 'real-time' application as a feedback for control of FES in a neuroprostheses. It provides methods for decoding primary afferent neurons and sets a foundation for further development of closed loop FES control of paralyzed extremities. Although a complete closed loop neuroprosthesis for natural behavior seems far away, the premise of this work argues that an interface at the dorsal root ganglia should be considered as a viable option

    Markov modelling on human activity recognition

    Get PDF
    Human Activity Recognition (HAR) is a research topic with a relevant interest in the machine learning community. Understanding the activities that a person is performing and the context where they perform them has a huge importance in multiple applications, including medical research, security or patient monitoring. The improvement of the smart-phones and inertial sensors technologies has lead to the implementation of activity recognition systems based on these devices, either by themselves or combining their information with other sensors. Since humans perform their daily activities sequentially in a specific order, there exist some temporal information in the physical activities that characterize the different human behaviour patterns. However, the most popular approach in HAR is to assume that the data is conditionally independent, segmenting the data in different windows and extracting the most relevant features from each segment. In this thesis we employ the temporal information explicitly, where the raw data provided by the wearable sensors is fed to the training models. Thus, we study how to perform a Markov modelling implementation of a long-term monitoring HAR system with wearable sensors, and we address the existing open problems arising while processing and training the data, combining different sensors and performing the long-term monitoring with battery powered devices. Employing directly the signals from the sensors to perform the recognition can lead to problems due to misplacements of the sensors on the body. We propose an orientation correction algorithm based on quaternions to process the signals and find a common frame reference for all of them independently on the position of the sensors or their orientation. This algorithm allows for a better activity recognition when feed to the classification algorithm when compared with similar approaches, and the quaternion transformations allow for a faster implementation. One of the most popular algorithms to model time series data are Hidden Markov Models (HMMs) and the training of the parameters of the model is performed using the Baum-Welch algorithm. However, this algorithm converges to local maxima and the multiple initializations needed to avoid them makes it computationally expensive for large datasets. We propose employing the theory of spectral learning to develop a discriminative HMM that avoids the problems of the Baum-Welch algorithm, outperforming it in both complexity and computational cost. When we implement a HAR system with several sensors, we need to consider how to perform the combination of the information provided by them. Data fusion can be performed either at signal level or at classification level. When performed at classification level, the usual approach is to combine the decisions of multiple classifiers on the body to obtain the performed activities. However, in the simple case with two classifiers, which can be a practical implementation of a HAR system, the combination reduces to selecting the most discriminative sensor, and no performance improvement is obtained against the single sensor implementation. In this thesis, we propose to employ the soft-outputs of the classifiers in the combination and we develop a method that considers the Markovian structure of the ground truth to capture the dynamics of the activities. We will show that this method improves the recognition of the activities with respect to other combination methods and with respect to the signal fusion case. Finally, in long-term monitoring HAR systems with wearable sensors we need to address the energy efficiency problem that is inherent to battery powered devices. The most common approach to improve the energy efficiency of such devices is to reduce the amount of data acquired by the wearable sensors. In that sense, we introduce a general framework for the energy efficiency of a system with multiple sensors under several energy restrictions. We propose a sensing strategy to optimize the temporal data acquisition based on computing the uncertainty of the activities given the data and adapt the acquisition actively. Furthermore, we develop a sensor selection algorithm based on Bayesian Experimental Design to obtain the best configuration of sensors that performs the activity recognition accurately, allowing for a further improvement on the energy efficiency by limiting the number of sensors employed in the acquisition.El reconocimiento de actividades humanas (HAR) es un tema de investigación con una gran relevancia para la comunidad de aprendizaje máquina. Comprender las actividades que una persona está realizando y el contexto en el que las realiza es de gran importancia en multitud de aplicaciones, entre las que se incluyen investigación médica, seguridad o monitorización de pacientes. La mejora en los smart-phones y en las tecnologías de sensores inerciales han dado lugar a la implementación de sistemas de reconocimiento de actividades basado en dichos dispositivos, ya sea por si mismos o combinándolos con otro tipo de sensores. Ya que los seres humanos realizan sus actividades diarias de manera secuencial en un orden específico, existe una cierta información temporal en las actividades físicas que caracterizan los diferentes patrones de comportamiento, Sin embargo, los algoritmos más comunes asumen que los datos son condicionalmente independientes, segmentándolos en diferentes ventanas y extrayendo las características más relevantes de cada segmento. En esta tesis utilizamos la información temporal de manera explícita, usando los datos crudos de los sensores como entrada de los modelos de entrenamiento. Por ello, analizamos como implementar modelos Markovianos para el reconocimiento de actividades en monitorizaciones de larga duración con sensores wearable, y tratamos los problemas existentes al procesar y entrenar los datos, al combinar diferentes sensores y al realizar adquisiciones de larga duración con dispositivos alimentados por baterías. Emplear directamente las señales de los sensores para realizar el reconocimiento de actividades puede dar lugar a problemas debido a la incorrecta colocación de los sensores en el cuerpo. Proponemos un algoritmo de corrección de la orientación basado en quaterniones para procesar las señales y encontrar un marco de referencia común independiente de la posición de los sensores y su orientación. Este algoritmo permite obtener un mejor reconocimiento de actividades al emplearlo en conjunto con un algoritmo de clasificación, cuando se compara con modelos similares. Además, la transformación de la orientación basada en quaterniones da lugar a una implementación más rápida. Uno de los algoritmos más populares para modelar series temporales son los modelos ocultos de Markov, donde los parámetros del modelo se entrenan usando el algoritmo de Baum-Welch. Sin embargo, este algoritmo converge en general a máximos locales, y las múltiples inicializaciones que se necesitan en su implementación lo convierten en un algoritmo de gran carga computacional cuando se emplea con bases de datos de un volumen considerable. Proponemos emplear la teoría de aprendizaje espectral para desarrollar un HMM discriminativo que evita los problemas del algoritmo de Baum-Welch, superándolo tanto en complejidad como en coste computacional. Cuando se implementa un sistema de reconocimiento de actividades con múltiples sensores, necesitamos considerar cómo realizar la combinación de la información que proporcionan. La fusión de los datos, se puede realizar tanto a nivel de señal como a nivel de clasificación. Cuando se realiza a nivel de clasificación, lo normal es combinar las decisiones de múltiples clasificadores colocados en el cuerpo para obtener las actividades que se están realizando. Sin embargo, en un caso simple donde únicamente se emplean dos sensores, que podría ser una implantación habitual de un sistema de reconocimiento de actividades, la combinación se reduce a seleccionar el sensor más discriminativo, y no se obtiene mejora con respecto a emplear un único sensor. En esta tesis proponemos emplear salidas blandas de los clasificadores para la combinación, desarrollando un modelo que considera la estructura Markoviana de los datos reales para capturar la dinámica de las actividades. Mostraremos como este método mejora el reconocimiento de actividades con respecto a otros métodos de combinación de clasificadores y con respecto a la fusión de los datos a nivel de señal. Por último, abordamos el problema de la eficiencia energética de dispositivos alimentados por baterías en sistemas de reconocimiento de actividades de larga duración. La aproximación más habitual para mejorar la eficiencia energética consiste en reducir el volumen de datos que adquieren los sensores. En ese sentido, introducimos un marco general para tratar el problema de la eficiencia energética en un sistema con múltiples sensores bajo ciertas restricciones de energética. Proponemos una estrategia de adquisición activa para optimizar el sistema temporal de recogida de datos, basándonos en la incertidumbre de las actividades dados los datos que conocemos. Además, desarrollamos un algoritmo de selección de sensores basado diseño experimental Bayesiano y así obtener la mejor configuración para realizar el reconocimiento de actividades limitando el número de sensores empleados y al mismo tiempo reduciendo su consumo energético.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Luis Ignacio Santamaría Caballero.- Secretario: Pablo Martínez Olmos.- Vocal: Alberto Suárez Gonzále

    Increasing the robustness of autonomous systems to hardware degradation using machine learning

    Get PDF
    Autonomous systems perform predetermined tasks (missions) with minimum supervision. In most applications, the state of the world changes with time. Sensors are employed to measure part or whole of the world’s state. However, sensors often fail amidst operation; feeding as such decision-making with wrong information about the world. Moreover, hardware degradation may alter dynamic behaviour, and subsequently the capabilities, of an autonomous system; rendering the original mission infeasible. This thesis applies machine learning to yield powerful and robust tools that can facilitate autonomy in modern systems. Incremental kernel regression is used for dynamic modelling. Algorithms of this sort are easy to train and are highly adaptive. Adaptivity allows for model adjustments, whenever the environment of operation changes. Bayesian reasoning provides a rigorous framework for addressing uncertainty. Moreover, using Bayesian Networks, complex inference regarding hardware degradation can be answered. Specifically, adaptive modelling is combined with Bayesian reasoning to yield recursive estimation algorithms that are robust to sensor failures. Two solutions are presented by extending existing recursive estimation algorithms from the robotics literature. The algorithms are deployed on an underwater vehicle and the performance is assessed in real-world experiments. A comparison against standard filters is also provided. Next, the previous algorithms are extended to consider sensor and actuator failures jointly. An algorithm that can detect thruster failures in an Autonomous Underwater Vehicle has been developed. Moreover, the algorithm adapts the dynamic model online to compensate for the detected fault. The performance of this algorithm was also tested in a real-world application. One step further than hardware fault detection, prognostics predict how much longer can a particular hardware component operate normally. Ubiquitous sensors in modern systems render data-driven prognostics a viable solution. However, training is based on skewed datasets; datasets where the samples from the faulty region of operation are much fewer than the ones from the healthy region of operation. This thesis presents a prognostic algorithm that tackles the problem of imbalanced (skewed) datasets

    Adaptive Sampling with Mobile Sensor Networks

    Get PDF
    Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios

    A modular approach for modeling, detecting, and tracking freezing of gait in Parkinson disease using inertial sensors

    Get PDF
    Parkinson disease, the second most common neurodegenerative disorder, is caused by the loss of dopaminergic subcortical neurons. Approximately 50% of people with Parkinson disease experience freezing of gait (FOG), a brief, episodic absence or marked reduction of forward progression of the feet despite the intention to walk. FOG causes falls and is resistant to medication in more than 50% of cases. FOG episodes can often be interrupted by mechanical interventions (e.g., a verbal reminder to march), but it is often not practical to apply these interventions on demand (e.g., there is not usually another person to detect an FOG episode and provide the reminder).Wearable sensors offer the possibility of detecting FOG episodes in real time and thus developing a “closed-loop” treatment: real-time detection can be coupled with on-demand interventions. Objective evaluation methods using wearable sensor technology to monitor and assess FOG have met with varying success. They do not use a signal model that captures FOG patterns explicitly, and they are of limited help in understanding the underlying mechanisms in the structure of the sensor data captured during FOG. In this dissertation, we first develop physically-based signal models for the sensor data, design statistical signal processing methods to detect FOG based on its patterns, and compute the probability of FOG. Then, we proceed to validate the system, using data from experimental gait assessment in a group of people with Parkinson disease.We further develop a modular approach to model, detect, and track FOG in Parkinson disease, using four modules, namely the detection, navigation, validation, and filtering modules. To capture the gait motion, we use an inertial measurement unit (IMU) consisting of a three-axis accelerometer and a three-axis gyroscope. We first build physically-based signal models that describe “no movement” and “trembling motion” during FOG events. In the detection module, we design a generalized likelihood ratio test framework to develop a two-stage detector for determining the zero-velocity event intervals (ZVEI) and trembling event intervals (TREI) that are associated with FOG. However, not all the detected TREI are associated with FOG. Therefore, to filter out the TREI which are not associated with FOG, we consider the fact that the alternating trembling motion in FOG is associated with low foot speeds and small pitch angles. Next, to estimate these gait parameters, we employ a zero-velocity aided inertial navigation system (ZV-INS) in the navigation module. The ZV-INS uses the ZVEI as pseudo measurements, along with a Kalman filter, to estimate the position, velocity, and orientation angles of the foot.To track the degradation of the gait parameters prior to the incidence of FOG, we detect valid gait cycles in the validation module. We first identify the non-stationary segments of the gyroscope signal in the sagittal plane, using ZVEI. Next, we preprocess the non-stationary segments by scaling and interpolating the signal. Finally, we validate the preprocessed non-stationary segment of the gyroscope signal in the sagittal plane as a valid gait cycle, using an optimization framework called sparsity-assisted wavelet denoising (SAWD). In the SAWD algorithm, we simultaneously combine low-pass filtering, multiresolution representations (wavelets), and a sparsity-inducing norm to obtain a sparse representation of the gyroscope signal in the sagittal plane for valid gait cycles, in the form of a discrete wavelet transform coefficient vector. We compute the root-mean-square error between the generated template and the sparse representation of the non-stationary segment of the gyroscope data in the sagittal plane, obtained using the SAWD algorithm. If the root-mean-square error is less than a fixed threshold, then the gait cycle is considered valid.Finally, to detect the onset and duration of FOG, we develop a point-process filter that computes the probability of FOG (pFOG). We model the edges of the TREI as a point-process, then assign weights to the edges, which depend on a participant-specific tunable parameter and the average value of the gait parameters observed in the bin containing the edge. To compute pFOG, we develop a Bayesian recursive filter and integrate the weights assigned to the edges of the TREI over a time window. To adaptively adjust the participant-specific tunable parameter, we develop two novel approaches that assign weights to the edges of the TREI based on the gait parameters extracted from the last valid gait cycle and the foot motion dynamics. We validate the performance of the modular system design using real data obtained from people with Parkinson disease who performed a battery of gait tasks known to trigger FOG. The results indicate improved performance, with an average accuracy greater than 85% and an average false positive rate of less than 14%. Altogether, we not only improve the accuracy of FOG detection but also open new avenues towards the development of low-cost remote health monitoring systems, which will help provide insights into the frequency and patterns of FOG that affect the quality of daily life in people with Parkinson disease

    Multi-modal on-body sensing of human activities

    Get PDF
    Increased usage and integration of state-of-the-art information technology in our everyday work life aims at increasing the working efficiency. Due to unhandy human-computer-interaction methods this progress does not always result in increased efficiency, for mobile workers in particular. Activity recognition based contextual computing attempts to balance this interaction deficiency. This work investigates wearable, on-body sensing techniques on their applicability in the field of human activity recognition. More precisely we are interested in the spotting and recognition of so-called manipulative hand gestures. In particular the thesis focuses on the question whether the widely used motion sensing based approach can be enhanced through additional information sources. The set of gestures a person usually performs on a specific place is limited -- in the contemplated production and maintenance scenarios in particular. As a consequence this thesis investigates whether the knowledge about the user's hand location provides essential hints for the activity recognition process. In addition, manipulative hand gestures -- due to their object manipulating character -- typically start in the moment the user's hand reaches a specific place, e.g. a specific part of a machinery. And the gestures most likely stop in the moment the hand leaves the position again. Hence this thesis investigates whether hand location can help solving the spotting problem. Moreover, as user-independence is still a major challenge in activity recognition, this thesis investigates location context as a possible key component in a user-independent recognition system. We test a Kalman filter based method to blend absolute position readings with orientation readings based on inertial measurements. A filter structure is suggested which allows up-sampling of slow absolute position readings, and thus introduces higher dynamics to the position estimations. In such a way the position measurement series is made aware of wrist motions in addition to the wrist position. We suggest location based gesture spotting and recognition approaches. Various methods to model the location classes used in the spotting and recognition stages as well as different location distance measures are suggested and evaluated. In addition a rather novel sensing approach in the field of human activity recognition is studied. This aims at compensating drawbacks of the mere motion sensing based approach. To this end we develop a wearable hardware architecture for lower arm muscular activity measurements. The sensing hardware based on force sensing resistors is designed to have a high dynamic range. In contrast to preliminary attempts the proposed new design makes hardware calibration unnecessary. Finally we suggest a modular and multi-modal recognition system; modular with respect to sensors, algorithms, and gesture classes. This means that adding or removing a sensor modality or an additional algorithm has little impact on the rest of the recognition system. Sensors and algorithms used for spotting and recognition can be selected and fine-tuned separately for each single activity. New activities can be added without impact on the recognition rates of the other activities

    TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    Get PDF
    Agricultural vehicles such as tractors and harvesters have for decades been able to navigate automatically and more efficiently using commercially available products such as auto-steering and tractor-guidance systems. However, a human operator is still required inside the vehicle to ensure the safety of vehicle and especially surroundings such as humans and animals. To get fully autonomous vehicles certified for farming, computer vision algorithms and sensor technologies must detect obstacles with equivalent or better than human-level performance. Furthermore, detections must run in real-time to allow vehicles to actuate and avoid collision.This thesis proposes a detection system (TractorEYE), a dataset (FieldSAFE), and procedures to fuse information from multiple sensor technologies to improve detection of obstacles and to generate a map. TractorEYE is a multi-sensor detection system for autonomous vehicles in agriculture. The multi-sensor system consists of three hardware synchronized and registered sensors (stereo camera, thermal camera and multi-beam lidar) mounted on/in a ruggedized and water-resistant casing. Algorithms have been developed to run a total of six detection algorithms (four for rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection information in a common format using either 3D positions or Inverse Sensor Models. A GPU powered computational platform is able to run detection algorithms online. For the rgb camera, a deep learning algorithm is proposed DeepAnomaly to perform real-time anomaly detection of distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is -- compared to a state-of-the-art object detector Faster R-CNN -- for an agricultural use-case able to detect humans better and at longer ranges (45-90m) using a smaller memory footprint and 7.3-times faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for real-time applications running on an embedded GPU. FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture. The dataset includes synchronized recordings from a rgb camera, stereo camera, thermal camera, 360-degree camera, lidar and radar. Precise localization and pose is provided using IMU and GPS. Ground truth of static and moving obstacles (humans, mannequin dolls, barrels, buildings, vehicles, and vegetation) are available as an annotated orthophoto and GPS coordinates for moving obstacles. Detection information from multiple detection algorithms and sensors are fused into a map using Inverse Sensor Models and occupancy grid maps. This thesis presented many scientific contribution and state-of-the-art within perception for autonomous tractors; this includes a dataset, sensor platform, detection algorithms and procedures to perform multi-sensor fusion. Furthermore, important engineering contributions to autonomous farming vehicles are presented such as easily applicable, open-source software packages and algorithms that have been demonstrated in an end-to-end real-time detection system. The contributions of this thesis have demonstrated, addressed and solved critical issues to utilize camera-based perception systems that are essential to make autonomous vehicles in agriculture a reality

    Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges and Opportunities

    Full text link
    The vast proliferation of sensor devices and Internet of Things enables the applications of sensor-based activity recognition. However, there exist substantial challenges that could influence the performance of the recognition system in practical scenarios. Recently, as deep learning has demonstrated its effectiveness in many areas, plenty of deep methods have been investigated to address the challenges in activity recognition. In this study, we present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition. We first introduce the multi-modality of the sensory data and provide information for public datasets that can be used for evaluation in different challenge tasks. We then propose a new taxonomy to structure the deep methods by challenges. Challenges and challenge-related deep methods are summarized and analyzed to form an overview of the current research progress. At the end of this work, we discuss the open issues and provide some insights for future directions

    Physical Human Activity Recognition Using Machine Learning Algorithms

    Get PDF
    With the rise in ubiquitous computing, the desire to make everyday lives smarter and easier with technology is on the increase. Human activity recognition (HAR) is the outcome of a similar motive. HAR enables a wide range of pervasive computing applications by recognizing the activity performed by a user. In order to contribute to the multi facet applications that HAR is capable to offer, predicting the right activity is of utmost importance. Simplest of the issues as the use of incorrect data manipulation or utilizing a wrong algorithm to perform prediction can hinder the performance of a HAR system. This study is designed to perform HAR by using two dimensionality reduction techniques followed by five different supervised machine learning algorithms as an aim to receive better predictive accuracy over the existing benchmark research. Correlation analysis (CA) and Principal component analysis (PCA) are used for feature reduction which resulted in 173 and 100 features respectively. Decision Tree, K Nearest Neighbor, Naive Bayes, Multinomial Logistic Regression and Artificial Neural Network algorithms were used to perform the classification task. The repeated random sub-sampling cross validation technique was used to perform the evaluation followed by a Wilcoxon signed rank test to evaluate the significance of the tests. The study resulted in ANN performing the best classification by achieving 97% of accuracy using the CA as feature reduction technique. The KNN and LR also provided satisfactory results and have received predictive results greater than the benchmark test. However, the decision tree and Naive bayes algorithms didn’t prove efficient

    Acquisition and distribution of synergistic reactive control skills

    Get PDF
    Learning from demonstration is an afficient way to attain a new skill. In the context of autonomous robots, using a demonstration to teach a robot accelerates the robot learning process significantly. It helps to identify feasible solutions as starting points for future exploration or to avoid actions that lead to failure. But the acquisition of pertinent observationa is predicated on first segmenting the data into meaningful sequences. These segments form the basis for learning models capable of recognising future actions and reconstructing the motion to control a robot. Furthermore, learning algorithms for generative models are generally not tuned to produce stable trajectories and suffer from parameter redundancy for high degree of freedom robots This thesis addresses these issues by firstly investigating algorithms, based on dynamic programming and mixture models, for segmentation sensitivity and recognition accuracy on human motion capture data sets of repetitive and categorical motion classes. A stability analysis of the non-linear dynamical systems derived from the resultant mixture model representations aims to ensure that any trajectories converge to the intended target motion as observed in the demonstrations. Finally, these concepts are extended to humanoid robots by deploying a factor analyser for each mixture model component and coordinating the structure into a low dimensional representation of the demonstrated trajectories. This representation can be constructed as a correspondence map is learned between the demonstrator and robot for joint space actions. Applying these algorithms for demonstrating movement skills to robot is a further step towards autonomous incremental robot learning
    corecore