18,582 research outputs found

    Representation of Functional Data in Neural Networks

    Get PDF
    Functional Data Analysis (FDA) is an extension of traditional data analysis to functional data, for example spectra, temporal series, spatio-temporal images, gesture recognition data, etc. Functional data are rarely known in practice; usually a regular or irregular sampling is known. For this reason, some processing is needed in order to benefit from the smooth character of functional data in the analysis methods. This paper shows how to extend the Radial-Basis Function Networks (RBFN) and Multi-Layer Perceptron (MLP) models to functional data inputs, in particular when the latter are known through lists of input-output pairs. Various possibilities for functional processing are discussed, including the projection on smooth bases, Functional Principal Component Analysis, functional centering and reduction, and the use of differential operators. It is shown how to incorporate these functional processing into the RBFN and MLP models. The functional approach is illustrated on a benchmark of spectrometric data analysis.Comment: Also available online from: http://www.sciencedirect.com/science/journal/0925231

    Lower and Upper Conditioning in Quantum Bayesian Theory

    Get PDF
    Updating a probability distribution in the light of new evidence is a very basic operation in Bayesian probability theory. It is also known as state revision or simply as conditioning. This paper recalls how locally updating a joint state can equivalently be described via inference using the channel extracted from the state (via disintegration). This paper also investigates the quantum analogues of conditioning, and in particular the analogues of this equivalence between updating a joint state and inference. The main finding is that in order to obtain a similar equivalence, we have to distinguish two forms of quantum conditioning, which we call lower and upper conditioning. They are known from the literature, but the common framework in which we describe them and the equivalence result are new.Comment: In Proceedings QPL 2018, arXiv:1901.0947

    Interference Effects in Quantum Belief Networks

    Full text link
    Probabilistic graphical models such as Bayesian Networks are one of the most powerful structures known by the Computer Science community for deriving probabilistic inferences. However, modern cognitive psychology has revealed that human decisions could not follow the rules of classical probability theory, because humans cannot process large amounts of data in order to make judgements. Consequently, the inferences performed are based on limited data coupled with several heuristics, leading to violations of the law of total probability. This means that probabilistic graphical models based on classical probability theory are too limited to fully simulate and explain various aspects of human decision making. Quantum probability theory was developed in order to accommodate the paradoxical findings that the classical theory could not explain. Recent findings in cognitive psychology revealed that quantum probability can fully describe human decisions in an elegant framework. Their findings suggest that, before taking a decision, human thoughts are seen as superposed waves that can interfere with each other, influencing the final decision. In this work, we propose a new Bayesian Network based on the psychological findings of cognitive scientists. We made experiments with two very well known Bayesian Networks from the literature. The results obtained revealed that the quantum like Bayesian Network can affect drastically the probabilistic inferences, specially when the levels of uncertainty of the network are very high (no pieces of evidence observed). When the levels of uncertainty are very low, then the proposed quantum like network collapses to its classical counterpart

    Updating the Born rule

    Full text link
    Despite the tremendous empirical success of quantum theory there is still widespread disagreement about what it can tell us about the nature of the world. A central question is whether the theory is about our knowledge of reality, or a direct statement about reality itself. Regardless of their stance on this question, current interpretations of quantum theory regard the Born rule as fundamental and add an independent state-update (or "collapse") rule to describe how quantum states change upon measurement. In this paper we present an alternative perspective and derive a probability rule that subsumes both the Born rule and the collapse rule. We show that this more fundamental probability rule can provide a rigorous foundation for informational, or "knowledge-based", interpretations of quantum theory.Comment: 6+2 pages; 3 figure
    • …
    corecore