337 research outputs found

    A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation

    Get PDF
    Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three nonmutually exclusive classes consisting of best subset selection methods, projection techniques and regularization. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularization procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.Comment: Published in at http://dx.doi.org/10.1214/12-STS406 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    OCDaf: Ordered Causal Discovery with Autoregressive Flows

    Full text link
    We propose OCDaf, a novel order-based method for learning causal graphs from observational data. We establish the identifiability of causal graphs within multivariate heteroscedastic noise models, a generalization of additive noise models that allow for non-constant noise variances. Drawing upon the structural similarities between these models and affine autoregressive normalizing flows, we introduce a continuous search algorithm to find causal structures. Our experiments demonstrate state-of-the-art performance across the Sachs and SynTReN benchmarks in Structural Hamming Distance (SHD) and Structural Intervention Distance (SID). Furthermore, we validate our identifiability theory across various parametric and nonparametric synthetic datasets and showcase superior performance compared to existing baselines

    Inferring dynamic genetic networks with low order independencies

    Full text link
    In this paper, we propose a novel inference method for dynamic genetic networks which makes it possible to face with a number of time measurements n much smaller than the number of genes p. The approach is based on the concept of low order conditional dependence graph that we extend here in the case of Dynamic Bayesian Networks. Most of our results are based on the theory of graphical models associated with the Directed Acyclic Graphs (DAGs). In this way, we define a minimal DAG G which describes exactly the full order conditional dependencies given the past of the process. Then, to face with the large p and small n estimation case, we propose to approximate DAG G by considering low order conditional independencies. We introduce partial qth order conditional dependence DAGs G(q) and analyze their probabilistic properties. In general, DAGs G(q) differ from DAG G but still reflect relevant dependence facts for sparse networks such as genetic networks. By using this approximation, we set out a non-bayesian inference method and demonstrate the effectiveness of this approach on both simulated and real data analysis. The inference procedure is implemented in the R package 'G1DBN' freely available from the CRAN archive

    Reassessing the Paradigms of Statistical Model-Building

    Get PDF
    Statistical model-building is the science of constructing models from data and from information about the data-generation process, with the aim of analysing those data and drawing inference from that analysis. Many statistical tasks are undertaken during this analysis; they include classification, forecasting, prediction and testing. Model-building has assumed substantial importance, as new technologies enable data on highly complex phenomena to be gathered in very large quantities. This creates a demand for more complex models, and requires the model-building process itself to be adaptive. The word “paradigm” refers to philosophies, frameworks and methodologies for developing and interpreting statistical models, in the context of data, and applying them for inference. In order to solve contemporary statistical problems it is often necessary to combine techniques from previously separate paradigms. The workshop addressed model-building paradigms that are at the frontiers of modern statistical research. It tried to create synergies, by delineating the connections and collisions among different paradigms. It also endeavoured to shape the future evolution of paradigms

    Non-stationary continuous dynamic Bayesian networks

    Get PDF

    Avoiding spurious feedback loops in the reconstruction of gene regulatory networks with dynamic bayesian networks

    Get PDF
    Feedback loops and recurrent structures are essential to the regulation and stable control of complex biological systems. The application of dynamic as opposed to static Bayesian networks is promising in that, in principle, these feedback loops can be learned. However, we show that the widely applied BGe score is susceptible to learning spurious feedback loops, which are a consequence of non-linear regulation and autocorrelation in the data. We propose a non-linear generalisation of the BGe model, based on a mixture model, and demonstrate that this approach successfully represses spurious feedback loops

    Semiparametric Regression During 2003–2007

    Get PDF
    Semiparametric regression is a fusion between parametric regression and nonparametric regression and the title of a book that we published on the topic in early 2003. We review developments in the field during the five year period since the book was written. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application
    corecore