3,191 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea

    Get PDF
    ObjectiveTo reduce premature deaths due to secondhand smoke (SHS) exposure among non-smokers, the Republic of Korea (ROK) adopted changes to the National Health Promotion Act, which allowed local governments to enact municipal ordinances to strengthen their authority to designate smoke-free areas and levy penalty fines. In this study, we examined national trends in SHS exposure after the introduction of these municipal ordinances at the city level in 2010.MethodsWe used interrupted time series analysis to assess whether the trends of SHS exposure in the workplace and at home, and the primary cigarette smoking rate changed following the policy adjustment in the national legislation in ROK. Population-standardized data for selected variables were retrieved from a nationally representative survey dataset and used to study the policy action’s effectiveness.ResultsFollowing the change in the legislation, SHS exposure in the workplace reversed course from an increasing (18% per year) trend prior to the introduction of these smoke-free ordinances to a decreasing (−10% per year) trend after adoption and enforcement of these laws (β2 = 0.18, p-value = 0.07; β3 = −0.10, p-value = 0.02). SHS exposure at home (β2 = 0.10, p-value = 0.09; β3 = −0.03, p-value = 0.14) and the primary cigarette smoking rate (β2 = 0.03, p-value = 0.10; β3 = 0.008, p-value = 0.15) showed no significant changes in the sampled period. Although analyses stratified by sex showed that the allowance of municipal ordinances resulted in reduced SHS exposure in the workplace for both males and females, they did not affect the primary cigarette smoking rate as much, especially among females.ConclusionStrengthening the role of local governments by giving them the authority to enact and enforce penalties on SHS exposure violation helped ROK to reduce SHS exposure in the workplace. However, smoking behaviors and related activities seemed to shift to less restrictive areas such as on the streets and in apartment hallways, negating some of the effects due to these ordinances. Future studies should investigate how smoke-free policies beyond public places can further reduce the SHS exposure in ROK

    Economic Policy Uncertainty: A Review on Applications and Measurement Methods with Focus on Text Mining Methods

    Full text link
    Economic Policy Uncertainty (EPU) represents the uncertainty realized by the investors during economic policy alterations. EPU is a critical indicator in economic studies to predict future investments, the unemployment rate, and recessions. EPU values can be estimated based on financial parameters directly or implied uncertainty indirectly using the text mining methods. Although EPU is a well-studied topic within the economy, the methods utilized to measure it are understudied. In this article, we define the EPU briefly and review the methods used to measure the EPU, and survey the areas influenced by the changes in EPU level. We divide the EPU measurement methods into three major groups with respect to their input data. Examples of each group of methods are enlisted, and the pros and cons of the groups are discussed. Among the EPU measures, text mining-based ones are dominantly studied. These methods measure the realized uncertainty by taking into account the uncertainty represented in the news and publicly available sources of financial information. Finally, we survey the research areas that rely on measuring the EPU index with the hope that studying the impacts of uncertainty would attract further attention of researchers from various research fields. In addition, we propose a list of future research approaches focusing on measuring EPU using textual material.Comment: JEL Classification: C53, C38, A13, O38, H5

    Less is More: Restricted Representations for Better Interpretability and Generalizability

    Get PDF
    Deep neural networks are prevalent in supervised learning for large amounts of tasks such as image classification, machine translation and even scientific discovery. Their success is often at the sacrifice of interpretability and generalizability. The increasing complexity of models and involvement of the pre-training process make the inexplicability more imminent. The outstanding performance when labeled data are abundant while prone to overfit when labeled data are limited demonstrates the difficulty of deep neural networks' generalizability to different datasets. This thesis aims to improve interpretability and generalizability by restricting representations. We choose to approach interpretability by focusing on attribution analysis to understand which features contribute to prediction on BERT, and to approach generalizability by focusing on effective methods in a low-data regime. We consider two strategies of restricting representations: (1) adding bottleneck, and (2) introducing compression. Given input x, suppose we want to learn y with the latent representation z (i.e. x→z→y), adding bottleneck means adding function R such that L(R(z)) < L(z) and introducing compression means adding function R so that L(R(y)) < L(y) where L refers to the number of bits. In other words, the restriction is added either in the middle of the pipeline or at the end of it. We first introduce how adding information bottleneck can help attribution analysis and apply it to investigate BERT's behavior on text classification in Chapter 3. We then extend this attribution method to analyze passage reranking in Chapter 4, where we conduct a detailed analysis to understand cross-layer and cross-passage behavior. Adding bottleneck can not only provide insight to understand deep neural networks but can also be used to increase generalizability. In Chapter 5, we demonstrate the equivalence between adding bottleneck and doing neural compression. We then leverage this finding with a framework called Non-Parametric learning by Compression with Latent Variables (NPC-LV), and show how optimizing neural compressors can be used in the non-parametric image classification with few labeled data. To further investigate how compression alone helps non-parametric learning without latent variables (NPC), we carry out experiments with a universal compressor gzip on text classification in Chapter 6. In Chapter 7, we elucidate methods of adopting the perspective of doing compression but without the actual process of compression using T5. Using experimental results in passage reranking, we show that our method is highly effective in a low-data regime when only one thousand query-passage pairs are available. In addition to the weakly supervised scenario, we also extend our method to large language models like GPT under almost no supervision --- in one-shot and zero-shot settings. The experiments show that without extra parameters or in-context learning, GPT can be used for semantic similarity, text classification, and text ranking and outperform strong baselines, which is presented in Chapter 8. The thesis proposes to tackle two big challenges in machine learning --- "interpretability" and "generalizability" through restricting representation. We provide both theoretical derivation and empirical results to show the effectiveness of using information-theoretic approaches. We not only design new algorithms but also provide numerous insights on why and how "compression" is so important in understanding deep neural networks and improving generalizability

    Detection of a reservoir of bedaquiline / clofazimine resistance associated variants in Mycobacterium tuberculosis predating the antibiotic era

    Get PDF
    Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by resistance-associated variants (RAVs) in the Rv0678 gene which can also confer cross-resistance to clofazimine, another TB drug. We compiled a dataset of 3,682 Mtb genomes, including 223 carrying Rv0678 bedaquiline RAVs. We identified at least 15 cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic analyses point to multiple emergence events and circulation of RAVs in Rv0678, often prior to the introduction of bedaquiline or clofazimine. We also identify one case where the RAV Ile67fs is estimated to have emerged prior to the antibiotic era. The presence of a pre-existing reservoir of bedaquiline-resistant Mtb strains augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control

    Advancing Time-Dependent Earthquake Risk Modelling

    Get PDF
    Catastrophe (CAT) risk models are commonly used in the (re)insurance industry and by public organizations to estimate potential losses due to natural hazards like earthquakes. Conventional earthquake risk modelling involves several significant modelling assumptions, which mainly neglect: (a) the interaction between adjacent faults; (b) the long-term elastic-rebound behaviour of faults; (c) the short-term hazard increase associated with aftershocks; and (d) the damage accumulation in building assets that results from the occurrence of multiple earthquakes in a short time window. Several recent earthquake events/sequences (e.g., 2010/2012 Canterbury earthquakes, New Zealand; 2019 Ridgecrest earthquakes, USA; 2023 Turkey-Syria earthquakes) have emphasised the simplicity of these assumptions and the need for earthquake risk models to start accounting for the short-and long-term time-dependent characteristics of earthquake risk. This thesis introduces an end-to-end framework for time-dependent earthquake risk modelling that incorporates (a) advancements in long-term time-dependent fault and aftershock modelling in the hazard component of the risk modelling framework; and (b) vulnerability models that account for the damage accumulation due to multiple ground motions occurring in a short period of time. The long-term time-dependent fault model used incorporates the elastic-rebound motivated methodologies of the latest Uniform California Earthquake Rupture Forecast (UCERF3) and explicitly accounts for fault-interaction triggering between major known faults. The Epidemic-Type Aftershock Sequence (ETAS) model is used to simulate aftershocks, representing the short-term hazard increase observed after large mainshocks. Damage-dependent fragility and vulnerability models are then used to account for damage accumulation. Sensitivity analyses of direct economic losses to these time dependencies are also conducted, providing valuable guidance on integrating time dependencies in earthquake risk modelling

    Detecting Team Conflict From Multiparty Dialogue

    Get PDF
    The emergence of online collaboration platforms has dramatically changed the dynamics of human teamwork, creating a veritable army of virtual teams composed of workers in different physical locations. The global world requires a tremendous amount of collaborative problem solving, primarily virtual, making it an excellent domain for computer scientists and team cognition researchers who seek to understand the dynamics involved in collaborative tasks to provide a solution that can support effective collaboration. Mining and analyzing data from collaborative dialogues can yield insights into virtual teams\u27 thought processes and help develop virtual agents to support collaboration. Good communication is indubitably the foundation of effective collaboration. Over time teams develop their own communication styles and often exhibit entrainment, a conversational phenomenon in which humans synchronize their linguistic choices. This dissertation presents several technical innovations in the usage of machine learning towards analyzing, monitoring, and predicting collaboration success from multiparty dialogue by successfully handling the problems of resource scarcity and natural distribution shifts. First, we examine the problem of predicting team performance from embeddings learned from multiparty dialogues such that teams with similar conflict scores lie close to one another in vector space. We extract the embeddings from three types of features: 1) dialogue acts 2) sentiment polarity 3) syntactic entrainment. Although all of these features can be used to predict team performance effectively, their utility varies by the teamwork phase. We separate the dialogues of players playing a cooperative game into stages: 1) early (knowledge building), 2) middle (problem-solving), and 3) late (culmination). Unlike syntactic entrainment, both dialogue act and sentiment embeddings effectively classify team performance, even during the initial phase. Second, we address the problem of learning generalizable models of collaboration. Machine learning models often suffer domain shifts; one advantage of encoding the semantic features is their adaptability across multiple domains. We evaluate the generalizability of different embeddings to other goal-oriented teamwork dialogues. Finally, in addition to identifying the features predictive of successful collaboration, we propose multi-feature embedding (MFeEmb) to improve the generalizability of collaborative task success prediction models under natural distribution shifts and resource scarcity. MFeEmb leverages the strengths of semantic, structural, and textual features of the dialogues by incorporating the most meaningful information from dialogue acts (DAs), sentiment polarities, and vocabulary of the dialogues. To further enhance the performance of MFeEmb under a resource-scarce scenario, we employ synthetic data generation and few-shot learning. We use the method proposed by Bailey and Chopra (2018) for few-shot learning from the FsText python library. We replaced the universal embedding with our proposed multi-feature embedding to compare the performance of the two. For data augmentation, we propose using synonym replacement from collaborative dialogue vocabulary instead of synonym replacement from WordNet. The research was conducted on several multiparty dialogue datasets, including ASIST, SwDA, Hate Speech, Diplomacy, Military, SAMSum, AMI, and GitHub. Results show that the proposed multi-feature embedding is an excellent choice for the meta-training stage of the few-shot learning, even if it learns from a small train set of size as small as 62 samples. Also, our proposed data augmentation method showed significant performance improvement. Our research has potential ramifications for the development of conversational agents that facilitate teaming as well as towards the creation of more effective social coding platforms to better support teamwork between software engineers
    • …
    corecore