19,577 research outputs found

    Nonparametric Bayesian multiple testing for longitudinal performance stratification

    Full text link
    This paper describes a framework for flexible multiple hypothesis testing of autoregressive time series. The modeling approach is Bayesian, though a blend of frequentist and Bayesian reasoning is used to evaluate procedures. Nonparametric characterizations of both the null and alternative hypotheses will be shown to be the key robustification step necessary to ensure reasonable Type-I error performance. The methodology is applied to part of a large database containing up to 50 years of corporate performance statistics on 24,157 publicly traded American companies, where the primary goal of the analysis is to flag companies whose historical performance is significantly different from that expected due to chance.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS252 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Beta-Product Poisson-Dirichlet Processes

    Get PDF
    Time series data may exhibit clustering over time and, in a multiple time series context, the clustering behavior may differ across the series. This paper is motivated by the Bayesian non--parametric modeling of the dependence between the clustering structures and the distributions of different time series. We follow a Dirichlet process mixture approach and introduce a new class of multivariate dependent Dirichlet processes (DDP). The proposed DDP are represented in terms of vector of stick-breaking processes with dependent weights. The weights are beta random vectors that determine different and dependent clustering effects along the dimension of the DDP vector. We discuss some theoretical properties and provide an efficient Monte Carlo Markov Chain algorithm for posterior computation. The effectiveness of the method is illustrated with a simulation study and an application to the United States and the European Union industrial production indexes

    Effect fusion using model-based clustering

    Get PDF
    In social and economic studies many of the collected variables are measured on a nominal scale, often with a large number of categories. The definition of categories is usually not unambiguous and different classification schemes using either a finer or a coarser grid are possible. Categorisation has an impact when such a variable is included as covariate in a regression model: a too fine grid will result in imprecise estimates of the corresponding effects, whereas with a too coarse grid important effects will be missed, resulting in biased effect estimates and poor predictive performance. To achieve automatic grouping of levels with essentially the same effect, we adopt a Bayesian approach and specify the prior on the level effects as a location mixture of spiky normal components. Fusion of level effects is induced by a prior on the mixture weights which encourages empty components. Model-based clustering of the effects during MCMC sampling allows to simultaneously detect categories which have essentially the same effect size and identify variables with no effect at all. The properties of this approach are investigated in simulation studies. Finally, the method is applied to analyse effects of high-dimensional categorical predictors on income in Austria

    Generalized Species Sampling Priors with Latent Beta reinforcements

    Full text link
    Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a {novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data.Comment: For correspondence purposes, Edoardo M. Airoldi's email is [email protected]; Federico Bassetti's email is [email protected]; Michele Guindani's email is [email protected] ; Fabrizo Leisen's email is [email protected]. To appear in the Journal of the American Statistical Associatio
    • …
    corecore