48,406 research outputs found

    Bayesian Learning-Based Adaptive Control for Safety Critical Systems

    Full text link
    Deep learning has enjoyed much recent success, and applying state-of-the-art model learning methods to controls is an exciting prospect. However, there is a strong reluctance to use these methods on safety-critical systems, which have constraints on safety, stability, and real-time performance. We propose a framework which satisfies these constraints while allowing the use of deep neural networks for learning model uncertainties. Central to our method is the use of Bayesian model learning, which provides an avenue for maintaining appropriate degrees of caution in the face of the unknown. In the proposed approach, we develop an adaptive control framework leveraging the theory of stochastic CLFs (Control Lyapunov Functions) and stochastic CBFs (Control Barrier Functions) along with tractable Bayesian model learning via Gaussian Processes or Bayesian neural networks. Under reasonable assumptions, we guarantee stability and safety while adapting to unknown dynamics with probability 1. We demonstrate this architecture for high-speed terrestrial mobility targeting potential applications in safety-critical high-speed Mars rover missions.Comment: Corrected an error in section II, where previously the problem was introduced in a non-stochastic setting and wrongly assumed the solution to an ODE with Gaussian distributed parametric uncertainty was equivalent to an SDE with a learned diffusion term. See Lew, T et al. "On the Problem of Reformulating Systems with Uncertain Dynamics as a Stochastic Differential Equation

    Dynamics of Social Networks: Multi-agent Information Fusion, Anticipatory Decision Making and Polling

    Full text link
    This paper surveys mathematical models, structural results and algorithms in controlled sensing with social learning in social networks. Part 1, namely Bayesian Social Learning with Controlled Sensing addresses the following questions: How does risk averse behavior in social learning affect quickest change detection? How can information fusion be priced? How is the convergence rate of state estimation affected by social learning? The aim is to develop and extend structural results in stochastic control and Bayesian estimation to answer these questions. Such structural results yield fundamental bounds on the optimal performance, give insight into what parameters affect the optimal policies, and yield computationally efficient algorithms. Part 2, namely, Multi-agent Information Fusion with Behavioral Economics Constraints generalizes Part 1. The agents exhibit sophisticated decision making in a behavioral economics sense; namely the agents make anticipatory decisions (thus the decision strategies are time inconsistent and interpreted as subgame Bayesian Nash equilibria). Part 3, namely {\em Interactive Sensing in Large Networks}, addresses the following questions: How to track the degree distribution of an infinite random graph with dynamics (via a stochastic approximation on a Hilbert space)? How can the infected degree distribution of a Markov modulated power law network and its mean field dynamics be tracked via Bayesian filtering given incomplete information obtained by sampling the network? We also briefly discuss how the glass ceiling effect emerges in social networks. Part 4, namely \emph{Efficient Network Polling} deals with polling in large scale social networks. In such networks, only a fraction of nodes can be polled to determine their decisions. Which nodes should be polled to achieve a statistically accurate estimates

    Bayesian Over-the-Air FedAvg via Channel Driven Stochastic Gradient Langevin Dynamics

    Full text link
    The recent development of scalable Bayesian inference methods has renewed interest in the adoption of Bayesian learning as an alternative to conventional frequentist learning that offers improved model calibration via uncertainty quantification. Recently, federated averaging Langevin dynamics (FALD) was introduced as a variant of federated averaging that can efficiently implement distributed Bayesian learning in the presence of noiseless communications. In this paper, we propose wireless FALD (WFALD), a novel protocol that realizes FALD in wireless systems by integrating over-the-air computation and channel-driven sampling for Monte Carlo updates. Unlike prior work on wireless Bayesian learning, WFALD enables (\emph{i}) multiple local updates between communication rounds; and (\emph{ii}) stochastic gradients computed by mini-batch. A convergence analysis is presented in terms of the 2-Wasserstein distance between the samples produced by WFALD and the targeted global posterior distribution. Analysis and experiments show that, when the signal-to-noise ratio is sufficiently large, channel noise can be fully repurposed for Monte Carlo sampling, thus entailing no loss in performance.Comment: 6 pages, 4 figures, 26 references, submitte

    Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks

    Full text link
    Effective training of deep neural networks suffers from two main issues. The first is that the parameter spaces of these models exhibit pathological curvature. Recent methods address this problem by using adaptive preconditioning for Stochastic Gradient Descent (SGD). These methods improve convergence by adapting to the local geometry of parameter space. A second issue is overfitting, which is typically addressed by early stopping. However, recent work has demonstrated that Bayesian model averaging mitigates this problem. The posterior can be sampled by using Stochastic Gradient Langevin Dynamics (SGLD). However, the rapidly changing curvature renders default SGLD methods inefficient. Here, we propose combining adaptive preconditioners with SGLD. In support of this idea, we give theoretical properties on asymptotic convergence and predictive risk. We also provide empirical results for Logistic Regression, Feedforward Neural Nets, and Convolutional Neural Nets, demonstrating that our preconditioned SGLD method gives state-of-the-art performance on these models.Comment: AAAI 201

    Stochastic Gradient Hamiltonian Monte Carlo

    Full text link
    Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a Metropolis-Hastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of HMC methods is the required gradient computation for simulation of the Hamiltonian dynamical system-such computation is infeasible in problems involving a large sample size or streaming data. Instead, we must rely on a noisy gradient estimate computed from a subset of the data. In this paper, we explore the properties of such a stochastic gradient HMC approach. Surprisingly, the natural implementation of the stochastic approximation can be arbitrarily bad. To address this problem we introduce a variant that uses second-order Langevin dynamics with a friction term that counteracts the effects of the noisy gradient, maintaining the desired target distribution as the invariant distribution. Results on simulated data validate our theory. We also provide an application of our methods to a classification task using neural networks and to online Bayesian matrix factorization.Comment: ICML 2014 versio
    • …
    corecore