27,076 research outputs found

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    Combining link and content-based information in a Bayesian inference model for entity search

    No full text
    An architectural model of a Bayesian inference network to support entity search in semantic knowledge bases is presented. The model supports the explicit combination of primitive data type and object-level semantics under a single computational framework. A flexible query model is supported capable to reason with the availability of simple semantics in querie

    Evaluation of a Bayesian inference network for ligand-based virtual screening

    Get PDF
    Background Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity. Results Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought. Conclusion A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening

    A multi-layered Bayesian network model for structured document retrieval

    Get PDF
    New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system for multimedia structured documents, like for example journal articles, e-books, and MPEG-7 videos. The system is based on Bayesian Networks, since this class of mathematical models enable to represent and quantify the relations between the structural components of the document. Some preliminary results on the system implementation are also presented

    A multi-layered Bayesian network model for structured document retrieval

    Get PDF
    New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system for multimedia structured documents, like for example journal articles, e-books, and MPEG-7 videos. The system is based on Bayesian Networks, since this class of mathematical models enable to represent and quantify the relations between the structural components of the document. Some preliminary results on the system implementation are also presented

    Ranking structured documents using utility theory in the Bayesian network retrieval model

    Get PDF
    In this paper a new method based on Utility and Decision theory is presented to deal with structured documents. The aim of the application of these methodologies is to refine a first ranking of structural units, generated by means of an Information Retrieval Model based on Bayesian Networks. Units are newly arranged in the new ranking by combining their posterior probabilities, obtained in the first stage, with the expected utility of retrieving them. The experimental work has been developed using the Shakespeare structured collection and the results show an improvement of the effectiveness of this new approach
    corecore