30,741 research outputs found

    Bayesian Inference and Optimal Design in the Sparse Linear Model

    Get PDF
    The linear model with sparsity-favouring prior on the coefficients has important applications in many different domains. In machine learning, most methods to date search for maximum a posteriori sparse solutions and neglect to represent posterior uncertainties. In this paper, we address problems of Bayesian optimal design (or experiment planning), for which accurate estimates of uncertainty are essential. To this end, we employ expectation propagation approximate inference for the linear model with Laplace prior, giving new insight into numerical stability properties and proposing a robust algorithm. We also show how to estimate model hyperparameters by empirical Bayesian maximisation of the marginal likelihood, and propose ideas in order to scale up the method to very large underdetermined problems. We demonstrate the versatility of our framework on the application of gene regulatory network identification from micro-array expression data, where both the Laplace prior and the active experimental design approach are shown to result in significant improvements. We also address the problem of sparse coding of natural images, and show how our framework can be used for compressive sensing tasks

    Bayesian Inference and Optimal Design in the Sparse Linear Model

    Get PDF
    The sparse linear model has seen many successful applications in Statistics, Machine Learning, and Computational Biology, such as identification of gene regulatory networks from micro-array expression data. Prior work has either approximated Bayesian inference by expensive Markov chain Monte Carlo, or replaced it by point estimation. We show how to obtain a good approximation to Bayesian analysis efficiently, using the Expectation Propagation method. We also address the problems of optimal design and hyperparameter estimation. We demonstrate our framework on a gene network identification task

    Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying large gene regulatory networks is an important task, while the acquisition of data through perturbation experiments (<it>e.g</it>., gene switches, RNAi, heterozygotes) is expensive. It is thus desirable to use an identification method that effectively incorporates available prior knowledge – such as sparse connectivity – and that allows to design experiments such that maximal information is gained from each one.</p> <p>Results</p> <p>Our main contributions are twofold: a method for consistent inference of network structure is provided, incorporating prior knowledge about sparse connectivity. The algorithm is time efficient and robust to violations of model assumptions. Moreover, we show how to use it for optimal experimental design, reducing the number of required experiments substantially. We employ sparse linear models, and show how to perform full Bayesian inference for these. We not only estimate a single maximum likelihood network, but compute a posterior distribution over networks, using a novel variant of the expectation propagation method. The representation of uncertainty enables us to do effective experimental design in a standard statistical setting: experiments are selected such that the experiments are maximally informative.</p> <p>Conclusion</p> <p>Few methods have addressed the design issue so far. Compared to the most well-known one, our method is more transparent, and is shown to perform qualitatively superior. In the former, hard and unrealistic constraints have to be placed on the network structure for mere computational tractability, while such are not required in our method. We demonstrate reconstruction and optimal experimental design capabilities on tasks generated from realistic non-linear network simulators.</p> <p>The methods described in the paper are available as a Matlab package at</p> <p><url>http://www.kyb.tuebingen.mpg.de/sparselinearmodel</url>.</p

    Compressive Measurement Designs for Estimating Structured Signals in Structured Clutter: A Bayesian Experimental Design Approach

    Full text link
    This work considers an estimation task in compressive sensing, where the goal is to estimate an unknown signal from compressive measurements that are corrupted by additive pre-measurement noise (interference, or clutter) as well as post-measurement noise, in the specific setting where some (perhaps limited) prior knowledge on the signal, interference, and noise is available. The specific aim here is to devise a strategy for incorporating this prior information into the design of an appropriate compressive measurement strategy. Here, the prior information is interpreted as statistics of a prior distribution on the relevant quantities, and an approach based on Bayesian Experimental Design is proposed. Experimental results on synthetic data demonstrate that the proposed approach outperforms traditional random compressive measurement designs, which are agnostic to the prior information, as well as several other knowledge-enhanced sensing matrix designs based on more heuristic notions.Comment: 5 pages, 4 figures. Accepted for publication at The Asilomar Conference on Signals, Systems, and Computers 201
    • …
    corecore