1,029 research outputs found

    A novel neural network approach to cDNA microarray image segmentation

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier.Microarray technology has become a great source of information for biologists to understand the workings of DNA which is one of the most complex codes in nature. Microarray images typically contain several thousands of small spots, each of which represents a different gene in the experiment. One of the key steps in extracting information from a microarray image is the segmentation whose aim is to identify which pixels within an image represent which gene. This task is greatly complicated by noise within the image and a wide degree of variation in the values of the pixels belonging to a typical spot. In the past there have been many methods proposed for the segmentation of microarray image. In this paper, a new method utilizing a series of artificial neural networks, which are based on multi-layer perceptron (MLP) and Kohonen networks, is proposed. The proposed method is applied to a set of real-world cDNA images. Quantitative comparisons between the proposed method and commercial software GenePix(Âź) are carried out in terms of the peak signal-to-noise ratio (PSNR). This method is shown to not only deliver results comparable and even superior to existing techniques but also have a faster run time.This work was funded in part by the National Natural Science Foundation of China under Grants 61174136 and 61104041, the Natural Science Foundation of Jiangsu Province of China under Grant BK2011598, the International Science and Technology Cooperation Project of China under Grant No. 2011DFA12910, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    A graph-based representation of Gene Expression profiles in DNA microarrays

    Get PDF
    This paper proposes a new and very flexible data model, called gene expression graph (GEG), for genes expression analysis and classification. Three features differentiate GEGs from other available microarray data representation structures: (i) the memory occupation of a GEG is independent of the number of samples used to built it; (ii) a GEG more clearly expresses relationships among expressed and non expressed genes in both healthy and diseased tissues experiments; (iii) GEGs allow to easily implement very efficient classifiers. The paper also presents a simple classifier for sample-based classification to show the flexibility and user-friendliness of the proposed data structur

    Methods to improve gene signal : Application to cDNA microarrays

    Get PDF
    Microarrays are high throughput biological assays that allow the screening of thousands of genes for their expression. The main idea behind microarrays is to compute for each gene a unique signal that is directly proportional to the quantity of mRNA that was hybridized on the chip. A large number of steps and errors associated with each step make the generated expression signal noisy. As a result, microarray data need to be carefully pre-processed before their analysis can be assumed to lead to reliable and biologically relevant conclusions. This thesis focuses on developing methods for improving gene signal and further utilizing this improved signal for higher level analysis. To achieve this, first, approaches for designing microarray experiments using various optimality criteria, considering both biological and technical replicates, are described. A carefully designed experiment leads to signal with low noise, as the effect of unwanted variations is minimized and the precision of the estimates of the parameters of interest are maximized. Second, a system for improving the gene signal by using three scans at varying scanner sensitivities is developed. A novel Bayesian latent intensity model is then applied on these three sets of expression values, corresponding to the three scans, to estimate the suitably calibrated true signal of genes. Third, a novel image segmentation approach that segregates the fluorescent signal from the undesired noise is developed using an additional dye, SYBR green RNA II. This technique helped in identifying signal only with respect to the hybridized DNA, and signal corresponding to dust, scratch, spilling of dye, and other noises, are avoided. Fourth, an integrated statistical model is developed, where signal correction, systematic array effects, dye effects, and differential expression, are modelled jointly as opposed to a sequential application of several methods of analysis. The methods described in here have been tested only for cDNA microarrays, but can also, with some modifications, be applied to other high-throughput technologies. Keywords: High-throughput technology, microarray, cDNA, multiple scans, Bayesian hierarchical models, image analysis, experimental design, MCMC, WinBUGS.Tarkastellaan menetelmiÀ, joilla voidaan parantaa geneetisiÀ signaaleja ja hyödyntÀÀ vahvistetun signaalin kÀyttöÀ myöhemmissÀ analyyseissÀ

    STATISTICAL ANALYSIS OF GENE EXPRESSION MICROARRAYS

    Get PDF
    This manuscript is composed of two major sections. In the first section of the manuscript we introduce some of the biological principles that form the bases of cDNA microarrays and explain how the different analytical steps introduce variability and potential biases in gene expression measurements that can sometimes be dificult to properly address. We address statistical issues associated to the measurement of gene expression (e.g., image segmentation, spot identification), to the correction for back-ground fluorescence and to the normalization and re-scaling of data to remove effects of dye, print-tip and others on expression. In this section of the manuscript we also describe the standard statistical approaches for estimating treatment effect on gene expression, and briefly address the multiple comparisons problem, often referred to as the big p small n paradox. In the second major section of the manuscript, we discuss the use of multiple scans as a means to reduce the variability of gene expression estimates. While the use of multiple scans under the same laser and sensor settings has already been proposed (Romualdi et al. 2003), we describe a general hierarchical modeling approach proposed by Love and Carriquiry (2005) that enables use of all the readings obtained under varied laser and sensor settings for each slide in the analyses, even if the number of readings per slide vary across slides. This technique also uses the varied settings to correct for some amount of the censoring discussed in the first section. It is to be expected that when combining scans and correcting for censoring, the estimate of gene expression will have smaller variance than it would have if based on a single spot measurement. In turn, expression estimates with smaller variance are expected to increase the power of statistical tests performed on them

    Estimating Gene Signals From Noisy Microarray Images

    Get PDF
    In oligonucleotide microarray experiments, noise is a challenging problem, as biologists now are studying their organisms not in isolation but in the context of a natural environment. In low photomultiplier tube (PMT) voltage images, weak gene signals and their interactions with the background fluorescence noise are most problematic. In addition, nonspecific sequences bind to array spots intermittently causing inaccurate measurements. Conventional techniques cannot precisely separate the foreground and the background signals. In this paper, we propose analytically based estimation technique. We assume a priori spot-shape information using a circular outer periphery with an elliptical center hole. We assume Gaussian statistics for modeling both the foreground and background signals. The mean of the foreground signal quantifies the weak gene signal corresponding to the spot, and the variance gives the measure of the undesired binding that causes fluctuation in the measurement. We propose a foreground-signal and shapeestimation algorithm using the Gibbs sampling method. We compare our developed algorithm with the existing Mann–Whitney (MW)- and expectation maximization (EM)/iterated conditional modes (ICM)-based methods. Our method outperforms the existing methods with considerably smaller mean-square error (MSE) for all signal-to-noise ratios (SNRs) in computer-generated images and gives better qualitative results in low-SNR real-data images. Our method is computationally relatively slow because of its inherent sampling operation and hence only applicable to very noisy-spot images. In a realistic example using our method, we show that the gene-signal fluctuations on the estimated foreground are better observed for the input noisy images with relatively higher undesired bindings

    Simulation of microarray data with realistic characteristics

    Get PDF
    BACKGROUND: Microarray technologies have become common tools in biological research. As a result, a need for effective computational methods for data analysis has emerged. Numerous different algorithms have been proposed for analyzing the data. However, an objective evaluation of the proposed algorithms is not possible due to the lack of biological ground truth information. To overcome this fundamental problem, the use of simulated microarray data for algorithm validation has been proposed. RESULTS: We present a microarray simulation model which can be used to validate different kinds of data analysis algorithms. The proposed model is unique in the sense that it includes all the steps that affect the quality of real microarray data. These steps include the simulation of biological ground truth data, applying biological and measurement technology specific error models, and finally simulating the microarray slide manufacturing and hybridization. After all these steps are taken into account, the simulated data has realistic biological and statistical characteristics. The applicability of the proposed model is demonstrated by several examples. CONCLUSION: The proposed microarray simulation model is modular and can be used in different kinds of applications. It includes several error models that have been proposed earlier and it can be used with different types of input data. The model can be used to simulate both spotted two-channel and oligonucleotide based single-channel microarrays. All this makes the model a valuable tool for example in validation of data analysis algorithms

    An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    Get PDF
    This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.</p

    Bayesian Hierarchical Model for Estimating Gene Expression Intensity Using Multiple Scanned Microarrays

    Get PDF
    We propose a method for improving the quality of signal from DNA microarrays by using several scans at varying scanner sen-sitivities. A Bayesian latent intensity model is introduced for the analysis of such data. The method improves the accuracy at which expressions can be measured in all ranges and extends the dynamic range of measured gene expression at the high end. Our method is generic and can be applied to data from any organism, for imaging with any scanner that allows varying the laser power, and for extraction with any image analysis software. Results from a self-self hybridization data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan
    • 

    corecore