380 research outputs found

    Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking

    Get PDF
    Indoor positioning using Wi-Fi signals is an economic technique. Its drawback is that multipath propagation distorts these signals, leading to an inaccurate localization. An approach to improve the positioning accuracy consists of using fingerprints based on channel state information (CSI). Following this line, we propose a new positioning method which consists of three stages. In the first stage, which is run during initialization, we build a model for the fingerprints of the environment in which we do localization. This model permits obtaining a precise interpolation of fingerprints at positions where a fingerprint measurement is not available. In the second stage, we use this model to obtain a preliminary position estimate based only on the fingerprint measured at the receiver’s location. Finally, in the third stage, we combine this preliminary estimation with the dynamical model of the receiver’s motion to obtain the final estimation. We compare the localization accuracy of the proposed method with other rival methods in two scenarios, namely, when fingerprints used for localization are similar to those used for initialization, and when they differ due to alterations in the environment. Our experiments show that the proposed method outperforms its rivals in both scenarios.Fil: Wang, Wenxu. Guandong University Of Technology; ChinaFil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Fu, Minyue. Universidad de Newcastle; Australi

    A Review of pedestrian indoor positioning systems for mass market applications

    Get PDF
    In the last decade, the interest in Indoor Location Based Services (ILBS) has increased stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for positioning systems that can be applied anywhere in the world for millions of users, that is, there is a need for developing IPS for mass market applications. Those systems must provide accurate position estimations with minimum infrastructure cost and easy scalability to different environments. This survey overviews the current state of the art of IPSs and classifies them in terms of the infrastructure and methodology employed. Finally, each group is reviewed analysing its advantages and disadvantages and its applicability to mass market applications

    A review of smartphones based indoor positioning: challenges and applications

    Get PDF
    The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Sensor fusion of IMU and BLE using a well-condition triangle approach for BLE positioning

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesGPS has been a de-facto standard for outdoor positioning. For indoor positioning different systems exist. But there is no general solution to fit all situations. A popular choice among service provider is BLE-based IPS. BLE-has low cost, low power consumption, and tit is are compatible with newer smartphones. These factors make it suitable for mass market applications with an estimated market of 10 billion USD by 2020. Although, BLEbased IPS have advantages over its counterparts, it has not solved the position accuracy problem yet. More research is needed to meet the position accuracy required for indoor LBS. In this thesis, two ways for accuracy improvement were tested i) a new algorithm for BLE-based IPS was proposed and ii) fusion of BLE position estimates with IMU position estimates was implemented. The first way exploits a concept from control survey called well-conditioned triangle. Theoretically, a well-conditioned triangle is an equilateral triangle but for in practice, triangles whose angles are greater than 30° and less than 120° are considered well-conditioned. Triangles which do not satisfy well-condition are illconditioned. An estimated position has the least error if the geometry from which it is estimated satisfy well-condition. Ill-conditioned triangle should not be used for position estimation. The proposed algorithm checked for well-condition among the closest detected beacons and output estimates only when the beacons geometry satisfied well-condition. The proposed algorithm was compared with weighted centroid (WC) algorithm. Proposed algorithm did not improve on the accuracy but the variance in error was highly reduced. The second way tested was fusion of BLE and IMU using Kálmán filter. Fusion generally gives better results but a noteworthy result from fusion was that the position estimates during turns were accurate. When used separately, both BLE and IMU estimates showed errors in turns. Fusion with IMU improved the accuracy. More research is required to improve accuracy of BLE-based IPS. Reproducibility self-assessment (https://osf.io/j97zp/): 2, 2, 2, 1, 2 (input data, prepossessing, methods, computational environment, results)

    A Review of Hybrid Indoor Positioning Systems Employing WLAN Fingerprinting and Image Processing

    Get PDF
    Location-based services (LBS) are a significant permissive technology. One of the main components in indoor LBS is the indoor positioning system (IPS). IPS utilizes many existing technologies such as radio frequency, images, acoustic signals, as well as magnetic sensors, thermal sensors, optical sensors, and other sensors that are usually installed in a mobile device. The radio frequency technologies used in IPS are WLAN, Bluetooth, Zig Bee, RFID, frequency modulation, and ultra-wideband. This paper explores studies that have combined WLAN fingerprinting and image processing to build an IPS. The studies on combined WLAN fingerprinting and image processing techniques are divided based on the methods used. The first part explains the studies that have used WLAN fingerprinting to support image positioning. The second part examines works that have used image processing to support WLAN fingerprinting positioning. Then, image processing and WLAN fingerprinting are used in combination to build IPS in the third part. A new concept is proposed at the end for the future development of indoor positioning models based on WLAN fingerprinting and supported by image processing to solve the effect of people presence around users and the user orientation problem

    Practical implementation of a hybrid indoor localization system

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáIndoor localization systems occupy a significant role to track objects during their life cycle, e.g., related to retail, logistics and mobile robotics. These positioning systems use several techniques and technologies to estimate the position of each object, and face several requirements such as position accuracy, security, coverage range, energy consumption and cost. This master thesis describes a real-world scenario implementation, based on Bluetooth Low Energy (BLE) beacons, evaluating a Hybrid Indoor Positioning System (H-IPS) that combines two RSSI-based approaches: Multilateration (MLT) and Fingerprinting (FP). The objective is to track a target node, assuming that the object follows a linear motion model. It was employed Kalman Filter (KF) to decrease the positioning errors of the MLT and FP techniques. Furthermore a Track-to-Track Fusion (TTF) is performed on the two KF outputs in order to maximize the performance. The results show that the accuracy of H-IPS overcomes the standalone FP in 21%, while the original MLT is outperformed in 52%. Finally, the proposed solution demonstrated a probability of error < 2 m of 80%, while the same probability for the FP and MLT are 56% and 20%, respectively.Os sistemas de localização de ambientes internos desempenham um papel importante na localização de objectos durante o seu ciclo de vida, como por exemplo os relacionados com o varejo, a logística e a robótica móvel. Estes sistemas de localização utilizam várias técnicas e tecnologias para estimar a posição de cada objecto, e possuem alguns critérios tais como precisão, segurança, alcance, consumo de energia e custo. Esta dissertação de mestrado descreve uma implementação num cenário real, baseada em Bluetooth Low Energy (BLE) beacons, avaliando um Sistema Híbrido de Posicionamento para Ambientes Internos (H-IPS, do inglês Hybrid Indoor Positioning System) que combina duas abordagens baseadas no Indicador de Intensidade do Sinal Recebido (RSSI, do inglês Received Signal Strength Indicator): Multilateração (MLT) e Fingerprinting (FP). O objectivo é localizar um nó alvo, assumindo que o objecto segue um modelo de movimento linear. Foi utilizado Filtro de Kalman (FK) para diminuir os erros de posicionamento do MLT e FP, além de aplicar uma fusão de vetores de estado nas duas saídas FK, a fim de maximizar o desempenho. Os resultados mostram que a precisão do H-IPS supera o FP original em 21%, enquanto que o MLT original tem um desempenho superior a 52%. Finalmente, a solução proposta apresentou uma probabilidade de erro de < 2 m de 80%, enquanto a mesma probabilidade para FP e MLT foi de 56% e 20%, respectivamente
    corecore