248 research outputs found

    Oscillator Phase Noise and Small-Scale Channel Fading in Higher Frequency Bands

    Get PDF
    This paper investigates the effect of oscillator phase noise and channel variations due to fading on the performance of communication systems at frequency bands higher than 10GHz. Phase noise and channel models are reviewed and technology-dependent bounds on the phase noise quality of radio oscillators are presented. Our study shows that, in general, both channel variations and phase noise can have severe effects on the system performance at high frequencies. Importantly, their relative severity depends on the application scenario and system parameters such as center frequency and bandwidth. Channel variations are seen to be more severe than phase noise when the relative velocity between the transmitter and receiver is high. On the other hand, performance degradation due to phase noise can be more severe when the center frequency is increased and the bandwidth is kept a constant, or when oscillators based on low power CMOS technology are used, as opposed to high power GaN HEMT based oscillators.Comment: IEEE Global Telecommun. Conf. (GLOBECOM), Austin, TX, Dec. 201

    ML Detection in Phase Noise Impaired SIMO Channels with Uplink Training

    Full text link
    The problem of maximum likelihood (ML) detection in training-assisted single-input multiple-output (SIMO) systems with phase noise impairments is studied for two different scenarios, i.e. the case when the channel is deterministic and known (constant channel) and the case when the channel is stochastic and unknown (fading channel). Further, two different operations with respect to the phase noise sources are considered, namely, the case of identical phase noise sources and the case of independent phase noise sources over the antennas. In all scenarios the optimal detector is derived for a very general parametrization of the phase noise distribution. Further, a high signal-to-noise-ratio (SNR) analysis is performed to show that symbol-error-rate (SER) floors appear in all cases. The SER floor in the case of identical phase noise sources (for both constant and fading channels) is independent of the number of antenna elements. In contrast, the SER floor in the case of independent phase noise sources is reduced when increasing the number of antenna elements (for both constant and fading channels). Finally, the system model is extended to multiple data channel uses and it is shown that the conclusions are valid for these setups, as well.Comment: (To appear in IEEE Transactions on Communications, 2015), Contains additional material (Appendix B. T-slot Detectors

    Dealing with Interference in Distributed Large-scale MIMO Systems: A Statistical Approach

    Full text link
    This paper considers the problem of interference control through the use of second-order statistics in massive MIMO multi-cell networks. We consider both the cases of co-located massive arrays and large-scale distributed antenna settings. We are interested in characterizing the low-rankness of users' channel covariance matrices, as such a property can be exploited towards improved channel estimation (so-called pilot decontamination) as well as interference rejection via spatial filtering. In previous work, it was shown that massive MIMO channel covariance matrices exhibit a useful finite rank property that can be modeled via the angular spread of multipath at a MIMO uniform linear array. This paper extends this result to more general settings including certain non-uniform arrays, and more surprisingly, to two dimensional distributed large scale arrays. In particular our model exhibits the dependence of the signal subspace's richness on the scattering radius around the user terminal, through a closed form expression. The applications of the low-rankness covariance property to channel estimation's denoising and low-complexity interference filtering are highlighted.Comment: 12 pages, 11 figures, to appear in IEEE Journal of Selected Topics in Signal Processin

    Performance of Cross-layer Design with Multiple Outdated Estimates in Multiuser MIMO System

    Get PDF
    By combining adaptive modulation (AM) and automatic repeat request (ARQ) protocol as well as user scheduling, the cross-layer design scheme of multiuser MIMO system with imperfect feedback is presented, and multiple outdated estimates method is proposed to improve the system performance. Based on this method and imperfect feedback information, the closed-form expressions of spectral efficiency (SE) and packet error rate (PER) of the system subject to the target PER constraint are respectively derived. With these expressions, the system performance can be effectively evaluated. To mitigate the effect of delayed feedback, the variable thresholds (VTs) are also derived by means of the maximum a posteriori method, and these VTs include the conventional fixed thresholds (FTs) as special cases. Simulation results show that the theoretical SE and PER are in good agreement with the corresponding simulation. The proposed CLD scheme with multiple estimates can obtain higher SE than the existing CLD scheme with single estimate, especially for large delay. Moreover, the CLD scheme with VTs outperforms that with conventional FTs

    Bayesian Estimation for Continuous-Time Sparse Stochastic Processes

    Full text link
    We consider continuous-time sparse stochastic processes from which we have only a finite number of noisy/noiseless samples. Our goal is to estimate the noiseless samples (denoising) and the signal in-between (interpolation problem). By relying on tools from the theory of splines, we derive the joint a priori distribution of the samples and show how this probability density function can be factorized. The factorization enables us to tractably implement the maximum a posteriori and minimum mean-square error (MMSE) criteria as two statistical approaches for estimating the unknowns. We compare the derived statistical methods with well-known techniques for the recovery of sparse signals, such as the â„“1\ell_1 norm and Log (â„“1\ell_1-â„“0\ell_0 relaxation) regularization methods. The simulation results show that, under certain conditions, the performance of the regularization techniques can be very close to that of the MMSE estimator.Comment: To appear in IEEE TS
    • …
    corecore