1,453 research outputs found

    Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting

    Get PDF
    A recently proposed iterated alternating sequential (IAS) MEG inverse solver algorithm, based on the coupling of a hierarchical Bayesian model with computationally efficient Krylov subspace linear solver, has been shown to perform well for both superficial and deep brain sources. However, a systematic study of its ability to correctly identify active brain regions is still missing. We propose novel statistical protocols to quantify the performance of MEG inverse solvers, focusing in particular on how their accuracy and precision at identifying active brain regions. We use these protocols for a systematic study of the performance of the IAS MEG inverse solver, comparing it with three standard inversion methods, wMNE, dSPM, and sLORETA. To avoid the bias of anecdotal tests towards a particular algorithm, the proposed protocols are Monte Carlo sampling based, generating an ensemble of activity patches in each brain region identified in a given atlas. The performance in correctly identifying the active areas is measured by how much, on average, the reconstructed activity is concentrated in the brain region of the simulated active patch. The analysis is based on Bayes factors, interpreting the estimated current activity as data for testing the hypothesis that the active brain region is correctly identified, versus the hypothesis of any erroneous attribution. The methodology allows the presence of a single or several simultaneous activity regions, without assuming that the number of active regions is known. The testing protocols suggest that the IAS solver performs well with both with cortical and subcortical activity estimation

    Structure Learning in Coupled Dynamical Systems and Dynamic Causal Modelling

    Get PDF
    Identifying a coupled dynamical system out of many plausible candidates, each of which could serve as the underlying generator of some observed measurements, is a profoundly ill posed problem that commonly arises when modelling real world phenomena. In this review, we detail a set of statistical procedures for inferring the structure of nonlinear coupled dynamical systems (structure learning), which has proved useful in neuroscience research. A key focus here is the comparison of competing models of (ie, hypotheses about) network architectures and implicit coupling functions in terms of their Bayesian model evidence. These methods are collectively referred to as dynamical casual modelling (DCM). We focus on a relatively new approach that is proving remarkably useful; namely, Bayesian model reduction (BMR), which enables rapid evaluation and comparison of models that differ in their network architecture. We illustrate the usefulness of these techniques through modelling neurovascular coupling (cellular pathways linking neuronal and vascular systems), whose function is an active focus of research in neurobiology and the imaging of coupled neuronal systems

    Covariance-domain Dictionary Learning for Overcomplete EEG Source Identification

    Full text link
    We propose an algorithm targeting the identification of more sources than channels for electroencephalography (EEG). Our overcomplete source identification algorithm, Cov-DL, leverages dictionary learning methods applied in the covariance-domain. Assuming that EEG sources are uncorrelated within moving time-windows and the scalp mixing is linear, the forward problem can be transferred to the covariance domain which has higher dimensionality than the original EEG channel domain. This allows for learning the overcomplete mixing matrix that generates the scalp EEG even when there may be more sources than sensors active at any time segment, i.e. when there are non-sparse sources. This is contrary to straight-forward dictionary learning methods that are based on the assumption of sparsity, which is not a satisfied condition in the case of low-density EEG systems. We present two different learning strategies for Cov-DL, determined by the size of the target mixing matrix. We demonstrate that Cov-DL outperforms existing overcomplete ICA algorithms under various scenarios of EEG simulations and real EEG experiments

    Reconstruction of electric fields and source distributions in EEG brain imaging

    Get PDF
    In this thesis, three different approaches are developed for the estimation of focal brain activity using EEG measurements. The proposed approaches have been tested and found feasible using simulated data. First, we develop a robust solver for the recovery of focal dipole sources. The solver uses a weighted dipole strength penalty term (also called weighted L1,2 norm) as prior information in order to ensure that the sources are sparse and focal, and that both the source orientation and depth bias are reduced. The solver is based on the truncated Newton interior point method combined with a logarithmic barrier method for the approximation of the penalty term. In addition, we use a Bayesian framework to derive the depth weights in the prior that are used to reduce the tendency of the solver to favor superficial sources. In the second approach, vector field tomography (VFT) is used for the estimation of underlying electric fields inside the brain from external EEG measurements. The electric field is reconstructed using a set of line integrals. This is the first time that VFT has been used for the recovery of fields when the dipole source lies inside the domain of reconstruction. The benefit of this approach is that we do not need a mathematical model for the sources. The test cases indicated that the approach can accurately localize the source activity. In the last part of the thesis, we show that, by using the Bayesian approximation error approach (AEA), precise knowledge of the tissue conductivities and head geometry are not always needed. We deliberately use a coarse head model and we take the typical variations in the head geometry and tissue conductivities into account statistically in the inverse model. We demonstrate that the AEA results are comparable to those obtained with an accurate head model.Open Acces

    Data?driven model optimization for optically pumped magnetometer sensor arrays

    Get PDF
    © 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. Optically pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography (MEG). OPMs do not require cryogenic cooling and can therefore be placed directly on the scalp surface. Unlike cryogenic systems, based on a well-characterised fixed arrays essentially linear in applied flux, OPM devices, based on different physical principles, present new modelling challenges. Here, we outline an empirical Bayesian framework that can be used to compare between and optimise sensor arrays. We perturb the sensor geometry (via simulation) and with analytic model comparison methods estimate the true sensor geometry. The width of these perturbation curves allows us to compare different MEG systems. We test this technique using simulated and real data from SQUID and OPM recordings using head-casts and scanner-casts. Finally, we show that given knowledge of underlying brain anatomy, it is possible to estimate the true sensor geometry from the OPM data themselves using a model comparison framework. This implies that the requirement for accurate knowledge of the sensor positions and orientations a priori may be relaxed. As this procedure uses the cortical manifold as spatial support there is no co-registration procedure or reliance on scalp landmarks

    Kalman-filter-based EEG source localization

    Get PDF
    This thesis uses the Kalman filter (KF) to solve the electroencephalographic (EEG) inverse problem to image its neuronal sources. Chapter 1 introduces EEG source localization and the KF and discusses how it can solve the inverse problem. Chapter 2 introduces an EEG inverse solution using a spatially whitened KF (SWKF) to reduce the computational burden. Likelihood maximization is used to fit spatially uniform neural model parameters to simulated and clinical EEGs. The SWKF accurately reconstructs source dynamics. Filter performance is analyzed by computing the innovations’ statistical properties and identifying spatial variations in performance that could be improved by use of spatially varying parameters. Chapter 3 investigates the SWKF via one-dimensional (1D) simulations. Motivated by Chapter 2, two model parameters are given Gaussian spatial profiles to better reflect brain dynamics. Constrained optimization ensures estimated parameters have clear biophysical interpretations. Inverse solutions are also computed using the optimal linear KF. Both filters produce accurate state estimates. Spatially varying parameters are correctly identified from datasets with transient dynamics, but estimates for driven datasets are degraded by the unmodeled drive term. Chapter 4 treats the whole-brain EEG inverse problem and applies features of the 1D simulations to the SWKF of Chapter 2. Spatially varying parameters are used to model spatial variation of the alpha rhythm. The simulated EEG here exhibits wave-like patterns and spatially varying dynamics. As in Chapter 3, optimization constrains model parameters to appropriate ranges. State estimation is again reliable for simulated and clinical EEG, although spatially varying parameters do not improve accuracy and parameter estimation is unreliable, with wave velocity underestimated. Contributing factors are identified and approaches to overcome them are discussed. Chapter 5 summarizes the main findings and outlines future work

    Kalman-filter-based EEG source localization

    Get PDF
    This thesis uses the Kalman filter (KF) to solve the electroencephalographic (EEG) inverse problem to image its neuronal sources. Chapter 1 introduces EEG source localization and the KF and discusses how it can solve the inverse problem. Chapter 2 introduces an EEG inverse solution using a spatially whitened KF (SWKF) to reduce the computational burden. Likelihood maximization is used to fit spatially uniform neural model parameters to simulated and clinical EEGs. The SWKF accurately reconstructs source dynamics. Filter performance is analyzed by computing the innovations’ statistical properties and identifying spatial variations in performance that could be improved by use of spatially varying parameters. Chapter 3 investigates the SWKF via one-dimensional (1D) simulations. Motivated by Chapter 2, two model parameters are given Gaussian spatial profiles to better reflect brain dynamics. Constrained optimization ensures estimated parameters have clear biophysical interpretations. Inverse solutions are also computed using the optimal linear KF. Both filters produce accurate state estimates. Spatially varying parameters are correctly identified from datasets with transient dynamics, but estimates for driven datasets are degraded by the unmodeled drive term. Chapter 4 treats the whole-brain EEG inverse problem and applies features of the 1D simulations to the SWKF of Chapter 2. Spatially varying parameters are used to model spatial variation of the alpha rhythm. The simulated EEG here exhibits wave-like patterns and spatially varying dynamics. As in Chapter 3, optimization constrains model parameters to appropriate ranges. State estimation is again reliable for simulated and clinical EEG, although spatially varying parameters do not improve accuracy and parameter estimation is unreliable, with wave velocity underestimated. Contributing factors are identified and approaches to overcome them are discussed. Chapter 5 summarizes the main findings and outlines future work
    • …
    corecore