27 research outputs found

    A Novel Sequential Coreset Method for Gradient Descent Algorithms

    Full text link
    A wide range of optimization problems arising in machine learning can be solved by gradient descent algorithms, and a central question in this area is how to efficiently compress a large-scale dataset so as to reduce the computational complexity. {\em Coreset} is a popular data compression technique that has been extensively studied before. However, most of existing coreset methods are problem-dependent and cannot be used as a general tool for a broader range of applications. A key obstacle is that they often rely on the pseudo-dimension and total sensitivity bound that can be very high or hard to obtain. In this paper, based on the ''locality'' property of gradient descent algorithms, we propose a new framework, termed ''sequential coreset'', which effectively avoids these obstacles. Moreover, our method is particularly suitable for sparse optimization whence the coreset size can be further reduced to be only poly-logarithmically dependent on the dimension. In practice, the experimental results suggest that our method can save a large amount of running time compared with the baseline algorithms

    Black-box Coreset Variational Inference

    Full text link
    Recent advances in coreset methods have shown that a selection of representative datapoints can replace massive volumes of data for Bayesian inference, preserving the relevant statistical information and significantly accelerating subsequent downstream tasks. Existing variational coreset constructions rely on either selecting subsets of the observed datapoints, or jointly performing approximate inference and optimizing pseudodata in the observed space akin to inducing points methods in Gaussian Processes. So far, both approaches are limited by complexities in evaluating their objectives for general purpose models, and require generating samples from a typically intractable posterior over the coreset throughout inference and testing. In this work, we present a black-box variational inference framework for coresets that overcomes these constraints and enables principled application of variational coresets to intractable models, such as Bayesian neural networks. We apply our techniques to supervised learning problems, and compare them with existing approaches in the literature for data summarization and inference.Comment: NeurIPS 202

    Soft-Label Anonymous Gastric X-ray Image Distillation

    Full text link
    This paper presents a soft-label anonymous gastric X-ray image distillation method based on a gradient descent approach. The sharing of medical data is demanded to construct high-accuracy computer-aided diagnosis (CAD) systems. However, the large size of the medical dataset and privacy protection are remaining problems in medical data sharing, which hindered the research of CAD systems. The idea of our distillation method is to extract the valid information of the medical dataset and generate a tiny distilled dataset that has a different data distribution. Different from model distillation, our method aims to find the optimal distilled images, distilled labels and the optimized learning rate. Experimental results show that the proposed method can not only effectively compress the medical dataset but also anonymize medical images to protect the patient's private information. The proposed approach can improve the efficiency and security of medical data sharing.Comment: Published as a conference paper at ICIP 202

    Coreset Clustering on Small Quantum Computers

    Full text link
    Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigate using this paradigm to perform kk-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We compare the performance of this approach to classical kk-means clustering both numerically and experimentally on IBM Q hardware. We are able to find data sets where coresets work well relative to random sampling and where QAOA could potentially outperform standard kk-means on a coreset. However, finding data sets where both coresets and QAOA work well--which is necessary for a quantum advantage over kk-means on the entire data set--appears to be challenging

    Stochastic Subset Selection for Efficient Training and Inference of Neural Networks

    Full text link
    Current machine learning algorithms are designed to work with huge volumes of high dimensional data such as images. However, these algorithms are being increasingly deployed to resource constrained systems such as mobile devices and embedded systems. Even in cases where large computing infrastructure is available, the size of each data instance, as well as datasets, can be a bottleneck in data transfer across communication channels. Also, there is a huge incentive both in energy and monetary terms in reducing both the computational and memory requirements of these algorithms. For nonparametric models that require to leverage the stored training data at inference time, the increased cost in memory and computation could be even more problematic. In this work, we aim to reduce the volume of data these algorithms must process through an end-to-end two-stage neural subset selection model. We first efficiently obtain a subset of candidate elements by sampling a mask from a conditionally independent Bernoulli distribution, and then autoregressivley construct a subset consisting of the most task relevant elements via sampling the elements from a conditional Categorical distribution. We validate our method on set reconstruction and classification tasks with feature selection as well as the selection of representative samples from a given dataset, on which our method outperforms relevant baselines. We also show in our experiments that our method enhances scalability of nonparametric models such as Neural Processes.Comment: 19 page
    corecore