509 research outputs found

    Bayesian Compressive Sensing for Cluster Structured Sparse Signals

    Get PDF
    International audienceIn traditional framework of compressive sensing (CS), only sparse prior on the property of signals in time or frequency domain is adopted to guarantee the exact inverse recovery. Other than sparse prior, structures on the sparse pattern of the signal have also been used as an additional prior, called model-based compressive sensing, such as clustered structure and tree structure on wavelet coefficients. In this paper, the cluster structured sparse signals are investigated. Under the framework of Bayesian compressive sensing, a hierarchical Bayesian model is employed to model both the sparse prior and cluster prior, then Markov Chain Monte Carlo (MCMC) sampling is implemented for the inference. Unlike the state-of-the-art algorithms which are also taking into account the cluster prior, the proposed algorithm solves the inverse problem automatically--prior information on the number of clusters and the size of each cluster is unknown. The experimental results show that the proposed algorithm outperforms many state-of-the-art algorithms

    Super-resolution Line Spectrum Estimation with Block Priors

    Full text link
    We address the problem of super-resolution line spectrum estimation of an undersampled signal with block prior information. The component frequencies of the signal are assumed to take arbitrary continuous values in known frequency blocks. We formulate a general semidefinite program to recover these continuous-valued frequencies using theories of positive trigonometric polynomials. The proposed semidefinite program achieves super-resolution frequency recovery by taking advantage of known structures of frequency blocks. Numerical experiments show great performance enhancements using our method.Comment: 7 pages, double colum

    Bayesian Inference and Compressed Sensing

    Get PDF
    This chapter provides the use of Bayesian inference in compressive sensing (CS), a method in signal processing. Among the recovery methods used in CS literature, the convex relaxation methods are reformulated again using the Bayesian framework and this method is applied in different CS applications such as magnetic resonance imaging (MRI), remote sensing, and wireless communication systems, specifically on multiple-input multiple-output (MIMO) systems. The robustness of Bayesian method in incorporating prior information like sparse and structure among the sparse entries is shown in this chapter

    Bayesian Compressive Sensing of Sparse Signals with Unknown Clustering Patterns

    Get PDF
    We consider the sparse recovery problem of signals with an unknown clustering pattern in the context of multiple measurement vectors (MMVs) using the compressive sensing (CS) technique. For many MMVs in practice, the solution matrix exhibits some sort of clustered sparsity pattern, or clumpy behavior, along each column, as well as joint sparsity across the columns. In this paper, we propose a new sparse Bayesian learning (SBL) method that incorporates a total variation-like prior as a measure of the overall clustering pattern in the solution. We further incorporate a parameter in this prior to account for the emphasis on the amount of clumpiness in the supports of the solution to improve the recovery performance of sparse signals with an unknown clustering pattern. This parameter does not exist in the other existing algorithms and is learned via our hierarchical SBL algorithm. While the proposed algorithm is constructed for the MMVs, it can also be applied to the single measurement vector (SMV) problems. Simulation results show the effectiveness of our algorithm compared to other algorithms for both SMV and MMVs

    Dynamic Compressive Sensing of Time-Varying Signals via Approximate Message Passing

    Full text link
    In this work the dynamic compressive sensing (CS) problem of recovering sparse, correlated, time-varying signals from sub-Nyquist, non-adaptive, linear measurements is explored from a Bayesian perspective. While there has been a handful of previously proposed Bayesian dynamic CS algorithms in the literature, the ability to perform inference on high-dimensional problems in a computationally efficient manner remains elusive. In response, we propose a probabilistic dynamic CS signal model that captures both amplitude and support correlation structure, and describe an approximate message passing algorithm that performs soft signal estimation and support detection with a computational complexity that is linear in all problem dimensions. The algorithm, DCS-AMP, can perform either causal filtering or non-causal smoothing, and is capable of learning model parameters adaptively from the data through an expectation-maximization learning procedure. We provide numerical evidence that DCS-AMP performs within 3 dB of oracle bounds on synthetic data under a variety of operating conditions. We further describe the result of applying DCS-AMP to two real dynamic CS datasets, as well as a frequency estimation task, to bolster our claim that DCS-AMP is capable of offering state-of-the-art performance and speed on real-world high-dimensional problems.Comment: 32 pages, 7 figure

    Sparse Signal Recovery Based on Compressive Sensing and Exploration Using Multiple Mobile Sensors

    Get PDF
    The work in this dissertation is focused on two areas within the general discipline of statistical signal processing. First, several new algorithms are developed and exhaustively tested for solving the inverse problem of compressive sensing (CS). CS is a recently developed sub-sampling technique for signal acquisition and reconstruction which is more efficient than the traditional Nyquist sampling method. It provides the possibility of compressed data acquisition approaches to directly acquire just the important information of the signal of interest. Many natural signals are sparse or compressible in some domain such as pixel domain of images, time, frequency and so forth. The notion of compressibility or sparsity here means that many coefficients of the signal of interest are either zero or of low amplitude, in some domain, whereas some are dominating coefficients. Therefore, we may not need to take many direct or indirect samples from the signal or phenomenon to be able to capture the important information of the signal. As a simple example, one can think of a system of linear equations with N unknowns. Traditional methods suggest solving N linearly independent equations to solve for the unknowns. However, if many of the variables are known to be zero or of low amplitude, then intuitively speaking, there will be no need to have N equations. Unfortunately, in many real-world problems, the number of non-zero (effective) variables are unknown. In these cases, CS is capable of solving for the unknowns in an efficient way. In other words, it enables us to collect the important information of the sparse signal with low number of measurements. Then, considering the fact that the signal is sparse, extracting the important information of the signal is the challenge that needs to be addressed. Since most of the existing recovery algorithms in this area need some prior knowledge or parameter tuning, their application to real-world problems to achieve a good performance is difficult. In this dissertation, several new CS algorithms are proposed for the recovery of sparse signals. The proposed algorithms mostly do not require any prior knowledge on the signal or its structure. In fact, these algorithms can learn the underlying structure of the signal based on the collected measurements and successfully reconstruct the signal, with high probability. The other merit of the proposed algorithms is that they are generally flexible in incorporating any prior knowledge on the noise, sparisty level, and so on. The second part of this study is devoted to deployment of mobile sensors in circumstances that the number of sensors to sample the entire region is inadequate. Therefore, where to deploy the sensors, to both explore new regions while refining knowledge in aleady visited areas is of high importance. Here, a new framework is proposed to decide on the trajectories of sensors as they collect the measurements. The proposed framework has two main stages. The first stage performs interpolation/extrapolation to estimate the phenomenon of interest at unseen loactions, and the second stage decides on the informative trajectory based on the collected and estimated data. This framework can be applied to various problems such as tuning the constellation of sensor-bearing satellites, robotics, or any type of adaptive sensor placement/configuration problem. Depending on the problem, some modifications on the constraints in the framework may be needed. As an application side of this work, the proposed framework is applied to a surrogate problem related to the constellation adjustment of sensor-bearing satellites
    • …
    corecore