215 research outputs found

    Mimicking human player strategies in fighting games using game artificial intelligence techniques

    Get PDF
    Fighting videogames (also known as fighting games) are ever growing in popularity and accessibility. The isolated console experiences of 20th century gaming has been replaced by online gaming services that allow gamers to play from almost anywhere in the world with one another. This gives rise to competitive gaming on a global scale enabling them to experience fresh play styles and challenges by playing someone new. Fighting games can typically be played either as a single player experience, or against another human player, whether it is via a network or a traditional multiplayer experience. However, there are two issues with these approaches. First, the single player offering in many fighting games is regarded as being simplistic in design, making the moves by the computer predictable. Secondly, while playing against other human players can be more varied and challenging, this may not always be achievable due to the logistics involved in setting up such a bout. Game Artificial Intelligence could provide a solution to both of these issues, allowing a human player s strategy to be learned and then mimicked by the AI fighter. In this thesis, game AI techniques have been researched to provide a means of mimicking human player strategies in strategic fighting games with multiple parameters. Various techniques and their current usages are surveyed, informing the design of two separate solutions to this problem. The first solution relies solely on leveraging k nearest neighbour classification to identify which move should be executed based on the in-game parameters, resulting in decisions being made at the operational level and being fed from the bottom-up to the strategic level. The second solution utilises a number of existing Artificial Intelligence techniques, including data driven finite state machines, hierarchical clustering and k nearest neighbour classification, in an architecture that makes decisions at the strategic level and feeds them from the top-down to the operational level, resulting in the execution of moves. This design is underpinned by a novel algorithm to aid the mimicking process, which is used to identify patterns and strategies within data collated during bouts between two human players. Both solutions are evaluated quantitatively and qualitatively. A conclusion summarising the findings, as well as future work, is provided. The conclusions highlight the fact that both solutions are proficient in mimicking human strategies, but each has its own strengths depending on the type of strategy played out by the human. More structured, methodical strategies are better mimicked by the data driven finite state machine hybrid architecture, whereas the k nearest neighbour approach is better suited to tactical approaches, or even random button bashing that does not always conform to a pre-defined strategy

    Player Behavior Modeling In Video Games

    Get PDF
    Player Behavior Modeling in Video Games In this research, we study players’ interactions in video games to understand player behavior. The first part of the research concerns predicting the winner of a game, which we apply to StarCraft and Destiny. We manage to build models for these games which have reasonable to high accuracy. We also investigate which features of a game comprise strong predictors, which are economic features and micro commands for StarCraft, and key shooter performance metrics for Destiny, though features differ between different match types. The second part of the research concerns distinguishing playing styles of players of StarCraft and Destiny. We find that we can indeed recognize different styles of playing in these games, related to different match types. We relate these different playing styles to chance of winning, but find that there are no significant differences between the effects of different playing styles on winning. However, they do have an effect on the length of matches. In Destiny, we also investigate what player types are distinguished when we use Archetype Analysis on playing style features related to change in performance, and find that the archetypes correspond to different ways of learning. In the final part of the research, we investigate to what extent playing styles are related to different demographics, in particular to national cultures. We investigate this for four popular Massively multiplayer online games, namely Battlefield 4, Counter-Strike, Dota 2, and Destiny. We found that playing styles have relationship with nationality and cultural dimensions, and that there are clear similarities between the playing styles of similar cultures. In particular, the Hofstede dimension Individualism explained most of the variance in playing styles between national cultures for the games that we examined

    Predicting player behavior in Tomb Raider : Underworld

    Get PDF
    This paper presents the results of an explorative study on predicting aspects of playing behavior for the major commercial title Tomb Raider: Underworld (TRU). Various supervised learning algorithms are trained on a large-scale set of in-game player behavior data, to predict when a player will stop playing the TRU game and, if the player completes the game, how long will it take to do so. Results reveal that linear regression models and other non-linear classification techniques perform well on the tasks and that decision tree learning induces small yet well-performing and informative trees. Moderate performance is achieved from the prediction models, which indicates the complexity of predicting player behavior based on a constrained set of gameplay metrics and the noise existent in the dataset examined, a generic problem in large-scale data collection from millions of remote clients.peer-reviewe

    Proceedings of the SAB'06 Workshop on Adaptive Approaches for Optimizing Player Satisfaction in Computer and Physical Games

    Get PDF
    These proceedings contain the papers presented at the Workshop on Adaptive approaches for Optimizing Player Satisfaction in Computer and Physical Games held at the Ninth international conference on the Simulation of Adaptive Behavior (SAB’06): From Animals to Animats 9 in Rome, Italy on 1 October 2006. We were motivated by the current state-of-the-art in intelligent game design using adaptive approaches. Artificial Intelligence (AI) techniques are mainly focused on generating human-like and intelligent character behaviors. Meanwhile there is generally little further analysis of whether these behaviors contribute to the satisfaction of the player. The implicit hypothesis motivating this research is that intelligent opponent behaviors enable the player to gain more satisfaction from the game. This hypothesis may well be true; however, since no notion of entertainment or enjoyment is explicitly defined, there is therefore little evidence that a specific character behavior generates enjoyable games. Our objective for holding this workshop was to encourage the study, development, integration, and evaluation of adaptive methodologies based on richer forms of humanmachine interaction for augmenting gameplay experiences for the player. We wanted to encourage a dialogue among researchers in AI, human-computer interaction and psychology disciplines who investigate dissimilar methodologies for improving gameplay experiences. We expected that this workshop would yield an understanding of state-ofthe- art approaches for capturing and augmenting player satisfaction in interactive systems such as computer games. Our invited speaker was Hakon Steinø, Technical Producer of IO-Interactive, who discussed applied AI research at IO-Interactive, portrayed the future trends of AI in computer game industry and debated the use of academic-oriented methodologies for augmenting player satisfaction. The sessions of presentations and discussions where classified into three themes: Adaptive Learning, Examples of Adaptive Games and Player Modeling. The Workshop Committee did a great job in providing suggestions and informative reviews for the submissions; thank you! This workshop was in part supported by the Danish National Research Council (project no: 274-05-0511). Finally, thanks to all the participants; we hope you found this to be useful!peer-reviewe

    Behavlets: a Method for Practical Player Modelling using Psychology-Based Player Traits and Domain Specific Features

    Get PDF
    As player demographics broaden it has become important to understand variation in player types. Improved player models can help game designers create games that accommodate a range of play styles/preferences, and may also facilitate the design of systems that detect player type and adapt dynamically in real-time. Existing approaches can model players, but most focus on tracking and classifying behaviour based on simple functional metrics such as deaths, specific choices, player avatar attributes, and completion times. We describe a different approach which seeks to leverage expert domain knowledge using a theoretical framework linking behaviour and game design patterns. The aim is to derive features of play from sequences of actions which are intrinsically informative about behaviour – which, because they are directly interpretable with respect to psychological theory of behaviour, we name ‘Behavlets’. We present the theoretical underpinning of this approach from research areas including psychology, temperament theory, player modelling, and game composition. The Behavlet creation process is described in detail; illustrated using a clone of the well-known game Pac-Man, with data gathered from 100 participants. A workshop evaluation study is also presented, where nine game design expert participants were briefed on the Behavlet concepts and requisite models, and then attempted to apply the method to games of the well-known first/third-person shooter genres, exemplified by ‘Gears of War’, (Microsoft). The participants found 139 Behavlet concepts mapping from behavioural preferences of the temperament types, to design patterns of the shooter genre games. We conclude that the Behavlet approach has significant promise, is complementary to existing methods and can improve theoretical validity of player models.Peer reviewe

    RaidEnv: Exploring New Challenges in Automated Content Balancing for Boss Raid Games

    Full text link
    The balance of game content significantly impacts the gaming experience. Unbalanced game content diminishes engagement or increases frustration because of repetitive failure. Although game designers intend to adjust the difficulty of game content, this is a repetitive, labor-intensive, and challenging process, especially for commercial-level games with extensive content. To address this issue, the game research community has explored automated game balancing using artificial intelligence (AI) techniques. However, previous studies have focused on limited game content and did not consider the importance of the generalization ability of playtesting agents when encountering content changes. In this study, we propose RaidEnv, a new game simulator that includes diverse and customizable content for the boss raid scenario in MMORPG games. Additionally, we design two benchmarks for the boss raid scenario that can aid in the practical application of game AI. These benchmarks address two open problems in automatic content balancing, and we introduce two evaluation metrics to provide guidance for AI in automatic content balancing. This novel game research platform expands the frontiers of automatic game balancing problems and offers a framework within a realistic game production pipeline.Comment: 14 pages, 6 figures, 6 tables, 2 algorithm
    • …
    corecore