1,481 research outputs found

    Bayesian Cluster Enumeration Criterion for Unsupervised Learning

    Full text link
    We derive a new Bayesian Information Criterion (BIC) by formulating the problem of estimating the number of clusters in an observed data set as maximization of the posterior probability of the candidate models. Given that some mild assumptions are satisfied, we provide a general BIC expression for a broad class of data distributions. This serves as a starting point when deriving the BIC for specific distributions. Along this line, we provide a closed-form BIC expression for multivariate Gaussian distributed variables. We show that incorporating the data structure of the clustering problem into the derivation of the BIC results in an expression whose penalty term is different from that of the original BIC. We propose a two-step cluster enumeration algorithm. First, a model-based unsupervised learning algorithm partitions the data according to a given set of candidate models. Subsequently, the number of clusters is determined as the one associated with the model for which the proposed BIC is maximal. The performance of the proposed two-step algorithm is tested using synthetic and real data sets.Comment: 14 pages, 7 figure

    Robust M-Estimation Based Bayesian Cluster Enumeration for Real Elliptically Symmetric Distributions

    Full text link
    Robustly determining the optimal number of clusters in a data set is an essential factor in a wide range of applications. Cluster enumeration becomes challenging when the true underlying structure in the observed data is corrupted by heavy-tailed noise and outliers. Recently, Bayesian cluster enumeration criteria have been derived by formulating cluster enumeration as maximization of the posterior probability of candidate models. This article generalizes robust Bayesian cluster enumeration so that it can be used with any arbitrary Real Elliptically Symmetric (RES) distributed mixture model. Our framework also covers the case of M-estimators that allow for mixture models, which are decoupled from a specific probability distribution. Examples of Huber's and Tukey's M-estimators are discussed. We derive a robust criterion for data sets with finite sample size, and also provide an asymptotic approximation to reduce the computational cost at large sample sizes. The algorithms are applied to simulated and real-world data sets, including radar-based person identification, and show a significant robustness improvement in comparison to existing methods

    Incremental Learning of Nonparametric Bayesian Mixture Models

    Get PDF
    Clustering is a fundamental task in many vision applications. To date, most clustering algorithms work in a batch setting and training examples must be gathered in a large group before learning can begin. Here we explore incremental clustering, in which data can arrive continuously. We present a novel incremental model-based clustering algorithm based on nonparametric Bayesian methods, which we call Memory Bounded Variational Dirichlet Process (MB-VDP). The number of clusters are determined flexibly by the data and the approach can be used to automatically discover object categories. The computational requirements required to produce model updates are bounded and do not grow with the amount of data processed. The technique is well suited to very large datasets, and we show that our approach outperforms existing online alternatives for learning nonparametric Bayesian mixture models

    Robust and Distributed Cluster Enumeration and Object Labeling

    Get PDF
    This dissertation contributes to the area of cluster analysis by providing principled methods to determine the number of data clusters and cluster memberships, even in the presence of outliers. The main theoretical contributions are summarized in two theorems on Bayesian cluster enumeration based on modeling the data as a family of Gaussian and t distributions. Real-world applicability is demonstrated by considering advanced signal processing applications, such as distributed camera networks and radar-based person identification. In particular, a new cluster enumeration criterion, which is applicable to a broad class of data distributions, is derived by utilizing Bayes' theorem and asymptotic approximations. This serves as a starting point when deriving cluster enumeration criteria for specific data distributions. Along this line, a Bayesian cluster enumeration criterion is derived by modeling the data as a family of multivariate Gaussian distributions. In real-world applications, the observed data is often subject to heavy tailed noise and outliers which obscure the true underlying structure of the data. Consequently, estimating the number of data clusters becomes challenging. To this end, a robust cluster enumeration criterion is derived by modeling the data as a family of multivariate t distributions. The family of t distributions is flexible by variation of its degree of freedom parameter (ν) and it contains, as special cases, the heavy tailed Cauchy for ν = 1, and the Gaussian distribution for ν → ∞. Given that ν is sufficiently small, the robust criterion accounts for outliers by giving them less weight in the objective function. A further contribution of this dissertation lies in refining the penalty terms of both the robust and Gaussian criterion for the finite sample regime. The derived cluster enumeration criteria require a clustering algorithm that partitions the data according to the number of clusters specified by each candidate model and provides an estimate of cluster parameters. Hence, a model-based unsupervised learning method is applied to partition the data prior to the calculation of an enumeration criterion, resulting in a two-step algorithm. The proposed algorithm provides a unified framework for the estimation of the number of clusters and cluster memberships. The developed algorithms are applied to two advanced signal processing use cases. Specifically, the cluster enumeration criteria are extended to a distributed sensor network setting by proposing two distributed and adaptive Bayesian cluster enumeration algorithms. The proposed algorithms are applied to a camera network use case, where the task is to estimate the number of pedestrians based on streaming-in data collected by multiple cameras filming a non-stationary scene from different viewpoints. A further research focus of this dissertation is the cluster membership assignment of individual data points and their associated cluster labels given that the number of clusters is either prespecified by the user or estimated by one of the methods described earlier. Solving this task is required in a broad range of applications, such as distributed sensor networks and radar-based person identification. For this purpose, an adaptive joint object labeling and tracking algorithm is proposed and applied to a real data use case of pedestrian labeling in a calibration-free multi-object multi-camera setup with low video resolution and frequent object occlusions. The proposed algorithm is well suited for ad hoc networks, as it requires neither registration of camera views nor a fusion center. Finally, a joint cluster enumeration and labeling algorithm is proposed to deal with the combined problem of estimating the number of clusters and cluster memberships at the same time. The proposed algorithm is applied to person labeling in a real data application of radar-based person identification without prior information on the number of individuals. It achieves comparable performance to a supervised approach that requires knowledge of the number of persons and a considerable amount of training data with known cluster labels. The proposed unsupervised method is advantageous in the considered application of smart assisted living, as it extracts the missing information from the data. Based on these examples, and, also considering the comparably low computational cost, we conjuncture that the proposed methods provide a useful set of robust cluster analysis tools for data science with many potential application areas, not only in the area of engineering

    Bayesian modeling of recombination events in bacterial populations

    Get PDF
    Background: We consider the discovery of recombinant segments jointly with their origins within multilocus DNA sequences from bacteria representing heterogeneous populations of fairly closely related species. The currently available methods for recombination detection capable of probabilistic characterization of uncertainty have a limited applicability in practice as the number of strains in a data set increases. Results: We introduce a Bayesian spatial structural model representing the continuum of origins over sites within the observed sequences, including a probabilistic characterization of uncertainty related to the origin of any particular site. To enable a statistically accurate and practically feasible approach to the analysis of large-scale data sets representing a single genus, we have developed a novel software tool (BRAT, Bayesian Recombination Tracker) implementing the model and the corresponding learning algorithm, which is capable of identifying the posterior optimal structure and to estimate the marginal posterior probabilities of putative origins over the sites. Conclusion: A multitude of challenging simulation scenarios and an analysis of real data from seven housekeeping genes of 120 strains of genus Burkholderia are used to illustrate the possibilities offered by our approach. The software is freely available for download at URL http://web.abo.fi/fak/ mnf//mate/jc/software/brat.html

    Maximum Margin Clustering for State Decomposition of Metastable Systems

    Full text link
    When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that the large margin technique can be utilized to search for the optimal decomposition without phase space discretization. Moreover, several simulation examples are given to illustrate the effectiveness of the proposed method

    Machine Learning for Identifying Group Trajectory Outliers

    Get PDF
    Prior works on the trajectory outlier detection problem solely consider individual outliers. However, in real-world scenarios, trajectory outliers can often appear in groups, e.g., a group of bikes that deviates to the usual trajectory due to the maintenance of streets in the context of intelligent transportation. The current paper considers the Group Trajectory Outlier (GTO) problem and proposes three algorithms. The first and the second algorithms are extensions of the well-known DBSCAN and kNN algorithms, while the third one models the GTO problem as a feature selection problem. Furthermore, two different enhancements for the proposed algorithms are proposed. The first one is based on ensemble learning and computational intelligence, which allows for merging algorithms’ outputs to possibly improve the final result. The second is a general high-performance computing framework that deals with big trajectory databases, which we used for a GPU-based implementation. Experimental results on different real trajectory databases show the scalability of the proposed approaches.acceptedVersio
    corecore