40 research outputs found

    Cork structural characteristics and their influence on the oxygen ingress through wine stoppers

    Get PDF
    Doutoramento em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - ULCork structural characteristics and their influence on the oxygen ingress through wine stoppers were studied aiming to contribute to an increased added-value of the natural cork stoppers. The surface porosity features of cork stoppers can differentiate the three main commercial classes used nowadays: the porosity coefficient was 2.4%, 4.0% and 5.5% for premium, good and standard stoppers, respectively. Image analysis also distinguished defects in the cork structure: empty ant gallery; Coroebus undatus F. larvae gallery; and wetcork. Several predictive classification models of stoppers into quality classes were built using the results from cork stoppers surface characterization and a simplified model using the main discriminant features i.e. porosity coefficient and the RGB colour-type variables was presented. X-ray tomography was used as a non-destructive technique to study the internal structure of natural cork stoppers, allowing the visualization of some defects inside the cork stopper. After characterization, the natural cork stoppers were used as closure of bottles and oxygen diffusion measurements were made along time. The kinetics of oxygen transfer was similar and could be adjusted to logarithmic models. On average 35% of the overall oxygen ingress occurred in the first 5 days, 59% in the 1st month and 78% in the first 3 months. Microtomography images (voxel size of 50 µm) allowed the observation of lenticular channels development and geometry, and the quantification of void and high density regions (HDR) fractions. The evidence that the void fraction of lenticular channels in the innermost part of the cork stopper inserted in the bottle was strongly related to the oxygen ingress in the first month after bottling can be used for quality enhancement of natural cork stoppers with incorporation of performance requirement

    Aplicación de análisis de imagen y tecnología NIRS a la evaluación de la porosidad de planchas, láminas y tapones de corcho y su relación con la calidad industrial

    Get PDF
    La calidad del corcho es una de las cuestiones más relevantes para el sector corchero. Es un proceso complejo que requiere evaluar múltiples factores y manejar simultáneamente variables cuantitativas y cualitativas, en ocasiones, con un alto grado de subjetividad.Se presentan dos objetivos, en primer lugar establecer la relación entre la calidad comercial del corcho y la porosidad medida mediante análisis de imagen en diferentes etapas de la transformación industrial (planchas, láminas y tapones), y en segundo lugar, evaluar el potencial de la tecnología NIRS como método de caracterización de la porosidad y, por tanto, de la calidad industrial. Para ello se ha utilizado un colectivo muestral formado por 479 planchas, 176 láminas y 90 tapones de corcho natural de una pieza, clasificados industrialmente en 4, 2 y 3 clases de calidad, respectivamente. El coeficiente de porosidad se evaluó aplicando técnicas de análisis de imagen, en dos y tres clases de color. Los espectros NIRS se obtuvieron en la sección transversal (planchas y tapones), en la sección tangencial (láminas y tapones) y en la sección radial (tapones), con un espectrofotómetro Foss NIRSystems 6500 SY II, mediante la modalidad de reflectancia remota.El análisis estadístico de la relación entre calidad y coeficiente de porosidad, medido mediante análisis de imagen, permite discriminar dos clases de calidad para planchas y láminas y tres clases para tapones. La clasificación de la imagen en un mayor número de cluster mejora los resultados.Las mejores calibraciones NIRS se obtuvieron para la porosidad medida en 3 clases de color, coincidiendo con los resultados obtenidos mediante análisis de imagen y permiten discriminar dos clases de calidad en planchas (refugo y corcho taponable), las dos clases en láminas (R2=0,83; r2 =0,78) y las tres clases en tapones (R2=0,67; r2=0,53).Debido a las dificultades de automatización del análisis de imagen en las primeras etapas de la transformación industrial, la tecnología NIRS podría ser una herramienta objetiva que permitiera evaluar la porosidad y diferenciar dos clases de calidad en planchas y láminas y tres clases en tapones. AbstractThe quality of cork is one of the most important issues for the cork industry. It is a complex process that requires evaluating many factors and simultaneously handles continuous and discrete variables, sometimes with a high degree of subjectivity.There are two objectives, in first place to establish the relationship between the commercial quality of the cork and the porosity measured by image analysis at different stages of industrial processing (planks, sheets, and stoppers), and in second place, to evaluate the potential of NIRS technology as a method of assessing the porosity and, therefore, the industrial quality. For this, there has been used a sample group formed by 479 planks, 176 sheets and 90 one piece natural cork stoppers, classified industrially into 4, 2 and 3 quality classes, respectively. The coefficient of porosity was evaluated into two and three classes of color by using image analysis techniques. NIRS spectra were obtained in the transverse section (planks and stoppers), in the tangential section (sheets and stoppers) and in the radial section (stoppers), with a spectrophotometer Foss NIRSystems 6500 SY II, by remote reflectance mode.Statistical analysis of the relationship between quality and coefficient of porosity, measured by image analysis, discriminates two quality classes for planks and sheets, and three classes for stoppers. Classifying the image into a larger number of clusters improves the results.Best NIRS calibrations were obtained measuring the porosity into 3 classes of color, matching the results obtained by image analysis. This allow to discriminate two quality classes in planks (refuse and race), the two classes in sheets (R2=0.83; r2 =0.78) and the three classes for stoppers (R2=0.67; r2=0.53).Due to the difficulties of automated image analysis in the early stages of industrial processing, NIRS technology could be an objective tool to evaluate the porosity and to differentiate two classes of quality in planks and sheets, and three classes in stoppers

    Aplicación de analisis de imagen y tecnología NIRS a la evaluacion de la porosidad de planchas, láminas y tapones de corcho y su relacion con la calidad industrial

    Get PDF
    The quality of cork is one of the most important issues for the cork industry. It is a complex process that requires evaluating many factors and simultaneously handles continuous and discrete variables, sometimes with a high degree of subjectivity. There are two objectives, in first place to establish the relationship between the commercial quality of the cork and the porosity measured by image analysis at different stages of industrial processing (planks, sheets, and stoppers), and in second place, to evaluate the potential of NIRS technology as a method of assessing the porosity and, therefore, the industrial quality. For this, there has been used a sample group formed by 479 planks, 176 sheets and 90 one piece natural cork stoppers, classified industrially into 4, 2 and 3 quality classes, respectively. The coefficient of porosity was evaluated into two and three classes of color by using image analysis techniques. NIRS spectra were obtained in the transverse section (planks and stoppers), in the tangential section (sheets and stoppers) and in the radial section (stoppers), with a spectrophotometer Foss NIRSystems 6500 SY II, by remote reflectance mode. Statistical analysis of the relationship between quality and coefficient of porosity, measured by image analysis, discriminates two quality classes for planks and sheets, and three classes for stoppers. Classifying the image into a larger number of clusters improves the results. Best NIRS calibrations were obtained measuring the porosity into 3 classes of color, matching the results obtained by image analysis. This allow to discriminate two quality classes in planks (refuse and race), the two classes in sheets (R2 =0.83; r2 =0.78) and the three classes for stoppers (R2 =0.67; r2 =0.53). Due to the difficulties of automated image analysis in the early stages of industrial processing, NIRS technology could be an objective tool to evaluate the porosity and to differentiate two classes of quality in planks and sheets, and three classes in stoppers.La calidad del corcho es una de las cuestiones más relevantes para el sector corchero. Es un proceso complejo que requiere evaluar múltiples factores y manejar simultáneamente variables cuantitativas y cualitativas, en ocasiones, con un alto grado de subjetividad. Se presentan dos objetivos, en primer lugar establecer la relación entre la calidad comercial del corcho y la porosidad medida mediante análisis de imagen en diferentes etapas de la transformación industrial (planchas, láminas y tapones), y en segundo lugar, evaluar el potencial de la tecnología NIRS como método de caracterización de la porosidad y, por tanto, de la calidad industrial. Para ello se ha utilizado un colectivo muestral formado por 479 planchas, 176 láminas y 90 tapones de corcho natural de una pieza, clasificados industrialmente en 4, 2 y 3 clases de calidad, respectivamente. El coeficiente de porosidad se evaluó aplicando técnicas de análisis de imagen, en dos y tres clases de color. Los espectros NIRS se obtuvieron en la sección transversal (planchas y tapones), en la sección tangencial (láminas y tapones) y en la sección radial (tapones), con un espectrofotómetro Foss NIRSystems 6500 SY II, mediante la modalidad de reflectancia remota. El análisis estadístico de la relación entre calidad y coeficiente de porosidad, medido mediante análisis de imagen, permite discriminar dos clases de calidad para planchas y láminas y tres clases para tapones. La clasificación de la imagen en un mayor número de cluster mejora los resultados. Las mejores calibraciones NIRS se obtuvieron para la porosidad medida en 3 clases de color, coincidiendo con los resultados obtenidos mediante análisis de imagen y permiten discriminar dos clases de calidad en planchas (refugo y corcho taponable), las dos clases en láminas (R2 =0,83; r2 =0,78) y las tres clases en tapones (R2 =0,67; r2 =0,53). Debido a las dificultades de automatización del análisis de imagen en las primeras etapas de la transformación industrial, la tecnología NIRS podría ser una herramienta objetiva que permitiera evaluar la porosidad y diferenciar dos clases de calidad en planchas y láminas y tres clases en tapones

    Grapes and Wine

    Get PDF
    Grape and Wine is a collective book composed of 18 chapters that address different issues related to the technological and biotechnological management of vineyards and winemaking. It focuses on recent advances, hot topics and recurrent problems in the wine industry and aims to be helpful for the wine sector. Topics covered include pest control, pesticide management, the use of innovative technologies and biotechnologies such as non-thermal processes, gene editing and use of non-Saccharomyces, the management of instabilities such as protein haze and off-flavors such as light struck or TCAs, the use of big data technologies, and many other key concepts that make this book a powerful reference in grape and wine production. The chapters have been written by experts from universities and research centers of 9 countries, thus representing knowledge, research and know-how of many regions worldwide

    Automatic human face detection in color images

    Get PDF
    Automatic human face detection in digital image has been an active area of research over the past decade. Among its numerous applications, face detection plays a key role in face recognition system for biometric personal identification, face tracking for intelligent human computer interface (HCI), and face segmentation for object-based video coding. Despite significant progress in the field in recent years, detecting human faces in unconstrained and complex images remains a challenging problem in computer vision. An automatic system that possesses a similar capability as the human vision system in detecting faces is still a far-reaching goal. This thesis focuses on the problem of detecting human laces in color images. Although many early face detection algorithms were designed to work on gray-scale Images, strong evidence exists to suggest face detection can be done more efficiently by taking into account color characteristics of the human face. In this thesis, we present a complete and systematic face detection algorithm that combines the strengths of both analytic and holistic approaches to face detection. The algorithm is developed to detect quasi-frontal faces in complex color Images. This face class, which represents typical detection scenarios in most practical applications of face detection, covers a wide range of face poses Including all in-plane rotations and some out-of-plane rotations. The algorithm is organized into a number of cascading stages including skin region segmentation, face candidate selection, and face verification. In each of these stages, various visual cues are utilized to narrow the search space for faces. In this thesis, we present a comprehensive analysis of skin detection using color pixel classification, and the effects of factors such as the color space, color classification algorithm on segmentation performance. We also propose a novel and efficient face candidate selection technique that is based on color-based eye region detection and a geometric face model. This candidate selection technique eliminates the computation-intensive step of window scanning often employed In holistic face detection, and simplifies the task of detecting rotated faces. Besides various heuristic techniques for face candidate verification, we developface/nonface classifiers based on the naive Bayesian model, and investigate three feature extraction schemes, namely intensity, projection on face subspace and edge-based. Techniques for improving face/nonface classification are also proposed, including bootstrapping, classifier combination and using contextual information. On a test set of face and nonface patterns, the combination of three Bayesian classifiers has a correct detection rate of 98.6% at a false positive rate of 10%. Extensive testing results have shown that the proposed face detector achieves good performance in terms of both detection rate and alignment between the detected faces and the true faces. On a test set of 200 images containing 231 faces taken from the ECU face detection database, the proposed face detector has a correct detection rate of 90.04% and makes 10 false detections. We have found that the proposed face detector is more robust In detecting in-plane rotated laces, compared to existing face detectors. +D2

    Independent component analysis for naive bayes classification

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Management of multi-ownership mediterranean forest landscapes:balancing biodiversity conservation and fire risk reduction

    Get PDF
    Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2013Fundação para a Ciência e a Tecnologia (FCT, BD/28974/2006); IFADAP-Program AGRO 8.1 (project 458-2003.09.002326.2)

    Book of abstracts, 4th World Congress on Agroforestry

    Full text link
    International audienc

    Book of Abstracts of MICROBIOTEC09

    Get PDF
    Sítio da conferência: http://www.deb.uminho.pt/microbiotec09/This book contains the abstracts presented at the 3rd joint meeting of the Portuguese Society of Microbiology and The Portuguese Society of Biotechnology - MicroBiotec09, held in Vilamoura, Portugal, over 3 days, from the 28th to the 30th of November, 2009. MicroBiotec09 comes in the sequence of previous conferences organized by each society, since 1982, date of the I Encontro Nacional de Biotecnologia (Lisbon), till 2005, date of the first joint meeting - MICRO'05 + BIOTEC'05 (Póvoa de Varzim). Following this joint meeting, another - MICRO 07 + BIOTEC 07 + XXIII JPG took place in Lisbon (2007). MicroBiotec09 is a joint organization of “Sociedade Portuguesa de Biotecnologia”, “Sociedade Portuguesa de Microbiologia”, Institute for Biotechnology and Bioengineering (Universidade do Minho – Departamento de Engenharia Biológica) and Centro de Recursos Microbiológicos (Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia – Departamento de Ciências da Vida). MicroBiotec09 brings together both young and established researchers and end users to discuss recent developments in different areas of Biotechnology and Microbiology. The conference program has thus been divided in 8 major sessions: Microbial Physiology, Molecular Biology and Functional Genomics; Cell and Tissue Engineering, Biomaterials and Nanobiotechnologies; Clinical Microbiology and Epidemiology; Environmental Microbiology and Biotechnology; Health and Pharmaceutical Biotechnology; Cellular Microbiology and Pathogenesis; Industrial and Food Microbiology and Biotechnology; Bioinformatics, Comparative Genomics and Evolution. A special session to celebrate the 200th anniversary of Charles Darwin's birth and the 150th anniversary of the publication of his landmark work “On the Origin of Species by Means of Natural Selection” will also take place. A total of 295 abstracts are included in the book, consisting of 6 invited lecturers, 10 oral presentations and 44 short oral presentations given in 3 parallel sessions, along with 4 slots for viewing poster presentations. All abstracts have been reviewed and we are grateful to the members of scientific and organizing committees for their evaluations. It was an intensive task since 328 submitted abstracts were received. It has been an honor for us to contribute to setting up MicroBiotec09 during an intensive period of 6 months. We wish to thank the authors who have contributed to yield a high scientific standard to the program. We are thankful to the sponsors who have contributed decisively to this event. We also extend our gratefulness to all those who, through their dedicated efforts, have assisted us in this task. On behalf of the Scientific and Organizing Committees we wish you that together with an interesting reading, the scientific program and the social moments organized will be memorable for all.Fundação para a Ciência e a Tecnologia (FCT
    corecore