148 research outputs found

    Capabilities and limitations of mono-camera pedestrian-based autocalibration

    Get PDF
    Many environments lack enough architectural information to allow an autocalibration based on features extracted from the scene structure. Nevertheless, the observation over time of walking people can generally be used to estimate the vertical vanishing point and the horizon line in the acquired image. However, this information is not enough to allow the calibration of a general camera without presuming excessive simplifications. This paper presents a study on the capabilities and limitations of the mono-camera calibration methods based solely on the knowledge of the vertical vanishing point and the horizon line in the image. The mathematical analysis sets the conditions to assure the feasibility of the mono-camera pedestrian-based autocalibration. In addition, examples of applications are presented and discusse

    Efficient people counting with limited manual interferences

    Full text link
    © 2014 IEEE. People counting is a topic with various practical applications. Over the last decade, two general approaches have been proposed to tackle this problem: a) counting based on individual human detection; b)counting by measuring regression relation between the crowd density and number of people. Because the regression based method can avoid explicit people detection which faces several well-known challenges, it has been considered as a robust method particularly on a complicated environments. An efficient regression based method is proposed in this paper, which can be well adopted into any existing video surveillance system. It adopts color based segmentation to extract foreground regions in images. Regression is established based on the foreground density and the number of people. This method is fast and can deal with lighting condition changes. Experiments on public datasets and one captured dataset have shown the effectiveness and robustness of the method

    Camera localization using trajectories and maps

    Get PDF
    We propose a new Bayesian framework for automatically determining the position (location and orientation) of an uncalibrated camera using the observations of moving objects and a schematic map of the passable areas of the environment. Our approach takes advantage of static and dynamic information on the scene structures through prior probability distributions for object dynamics. The proposed approach restricts plausible positions where the sensor can be located while taking into account the inherent ambiguity of the given setting. The proposed framework samples from the posterior probability distribution for the camera position via data driven MCMC, guided by an initial geometric analysis that restricts the search space. A Kullback-Leibler divergence analysis is then used that yields the final camera position estimate, while explicitly isolating ambiguous settings. The proposed approach is evaluated in synthetic and real environments, showing its satisfactory performance in both ambiguous and unambiguous settings

    Three dimensional information estimation and tracking for moving objects detection using two cameras framework

    Get PDF
    Calibration, matching and tracking are major concerns to obtain 3D information consisting of depth, direction and velocity. In finding depth, camera parameters and matched points are two necessary inputs. Depth, direction and matched points can be achieved accurately if cameras are well calibrated using manual traditional calibration. However, most of the manual traditional calibration methods are inconvenient to use because markers or real size of an object in the real world must be provided or known. Self-calibration can solve the traditional calibration limitation, but not on depth and matched points. Other approaches attempted to match corresponding object using 2D visual information without calibration, but they suffer low matching accuracy under huge perspective distortion. This research focuses on achieving 3D information using self-calibrated tracking system. In this system, matching and tracking are done under self-calibrated condition. There are three contributions introduced in this research to achieve the objectives. Firstly, orientation correction is introduced to obtain better relationship matrices for matching purpose during tracking. Secondly, after having relationship matrices another post-processing method, which is status based matching, is introduced for improving object matching result. This proposed matching algorithm is able to achieve almost 90% of matching rate. Depth is estimated after the status based matching. Thirdly, tracking is done based on x-y coordinates and the estimated depth under self-calibrated condition. Results show that the proposed self-calibrated tracking system successfully differentiates the location of objects even under occlusion in the field of view, and is able to determine the direction and the velocity of multiple moving objects
    corecore