4,072 research outputs found

    Hidden Markov models for radio localization in mixed LOS/NLOS conditions

    Get PDF
    Abstract—This paper deals with the problem of radio localization of moving terminals (MTs) for indoor applications with mixed line-of-sight/non-line-of-sight (LOS/NLOS) conditions. To reduce false localizations, a grid-based Bayesian approach is proposed to jointly track the sequence of the positions and the sight conditions of the MT. This method is based on the assumption that both the MT position and the sight condition are Markov chains whose state is hidden in the received signals [hidden Markov model (HMM)]. The observations used for the HMM localization are obtained from the power-delay profile of the received signals. In ultrawideband (UWB) systems, the use of the whole power-delay profile, rather than the total power only, allows to reach higher localization accuracy, as the power-profile is a joint measurement of time of arrival and power. Numerical results show that the proposed HMM method improves the accuracy of localization with respect to conventional ranging methods, especially in mixed LOS/NLOS indoor environments. Index Terms—Bayesian estimation, hidden Markov models (HMM), mobile positioning, source localization, tracking algorithms

    Hybrid Radio-map for Noise Tolerant Wireless Indoor Localization

    Full text link
    In wireless networks, radio-map based locating techniques are commonly used to cope the complex fading feature of radio signal, in which a radio-map is built by calibrating received signal strength (RSS) signatures at training locations in the offline phase. However, in severe hostile environments, such as in ship cabins where severe shadowing, blocking and multi-path fading effects are posed by ubiquitous metallic architecture, even radio-map cannot capture the dynamics of RSS. In this paper, we introduced multiple feature radio-map location method for severely noisy environments. We proposed to add low variance signature into radio map. Since the low variance signatures are generally expensive to obtain, we focus on the scenario when the low variance signatures are sparse. We studied efficient construction of multi-feature radio-map in offline phase, and proposed feasible region narrowing down and particle based algorithm for online tracking. Simulation results show the remarkably performance improvement in terms of positioning accuracy and robustness against RSS noises than the traditional radio-map method.Comment: 6 pages, 11th IEEE International Conference on Networking, Sensing and Control, April 7-9, 2014, Miami, FL, US

    Map-Aware Models for Indoor Wireless Localization Systems: An Experimental Study

    Full text link
    The accuracy of indoor wireless localization systems can be substantially enhanced by map-awareness, i.e., by the knowledge of the map of the environment in which localization signals are acquired. In fact, this knowledge can be exploited to cancel out, at least to some extent, the signal degradation due to propagation through physical obstructions, i.e., to the so called non-line-of-sight bias. This result can be achieved by developing novel localization techniques that rely on proper map-aware statistical modelling of the measurements they process. In this manuscript a unified statistical model for the measurements acquired in map-aware localization systems based on time-of-arrival and received signal strength techniques is developed and its experimental validation is illustrated. Finally, the accuracy of the proposed map-aware model is assessed and compared with that offered by its map-unaware counterparts. Our numerical results show that, when the quality of acquired measurements is poor, map-aware modelling can enhance localization accuracy by up to 110% in certain scenarios.Comment: 13 pages, 11 figures, 1 table. IEEE Transactions on Wireless Communications, 201

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore