111 research outputs found

    Bayes-Optimal Joint Channel-and-Data Estimation for Massive MIMO with Low-Precision ADCs

    Get PDF
    This paper considers a multiple-input multiple-output (MIMO) receiver with very low-precision analog-to-digital convertors (ADCs) with the goal of developing massive MIMO antenna systems that require minimal cost and power. Previous studies demonstrated that the training duration should be {\em relatively long} to obtain acceptable channel state information. To address this requirement, we adopt a joint channel-and-data (JCD) estimation method based on Bayes-optimal inference. This method yields minimal mean square errors with respect to the channels and payload data. We develop a Bayes-optimal JCD estimator using a recent technique based on approximate message passing. We then present an analytical framework to study the theoretical performance of the estimator in the large-system limit. Simulation results confirm our analytical results, which allow the efficient evaluation of the performance of quantized massive MIMO systems and provide insights into effective system design.Comment: accepted in IEEE Transactions on Signal Processin

    On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems

    Full text link
    Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performance loss. In this article, we discuss several important issues based on the most recent research on mmWave massive MIMO systems relying on low-resolution ADCs. We discuss the key transceiver design challenges including channel estimation, signal detector, channel information feedback and transmit precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative technique of improving the overall system performance. Finally, the associated challenges and potential implementations of the practical 5G mmWave massive MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin

    Joint Channel-and-Data Estimation for Large-MIMO Systems with Low-Precision ADCs

    Full text link
    The use of low precision (e.g., 1-3 bits) analog-to-digital convenors (ADCs) in very large multiple-input multiple-output (MIMO) systems is a technique to reduce cost and power consumption. In this context, nevertheless, it has been shown that the training duration is required to be {\em very large} just to obtain an acceptable channel state information (CSI) at the receiver. A possible solution to the quantized MIMO systems is joint channel-and-data (JCD) estimation. This paper first develops an analytical framework for studying the quantized MIMO system using JCD estimation. In particular, we use the Bayes-optimal inference for the JCD estimation and realize this estimator utilizing a recent technique based on approximate message passing. Large-system analysis based on the replica method is then adopted to derive the asymptotic performances of the JCD estimator. Results from simulations confirm our theoretical findings and reveal that the JCD estimator can provide a significant gain over conventional pilot-only schemes in the quantized MIMO system.Comment: 7 pages, 4 figure

    SVM-Based Channel Estimation and Data Detection for One-Bit Massive MIMO systems

    Get PDF
    The use of low-resolution Analog-to-Digital Converters (ADCs) is a practical solution for reducing cost and power consumption for massive Multiple-Input-Multiple-Output (MIMO) systems. However, the severe nonlinearity of low-resolution ADCs causes significant distortions in the received signals and makes the channel estimation and data detection tasks much more challenging. In this paper, we show how Support Vector Machine (SVM), a well-known supervised-learning technique in machine learning, can be exploited to provide efficient and robust channel estimation and data detection in massive MIMO systems with one-bit ADCs. First, the problem of channel estimation for uncorrelated channels is formulated as a conventional SVM problem. The objective function of this SVM problem is then modified for estimating spatially correlated channels. Next, a two-stage detection algorithm is proposed where SVM is further exploited in the first stage. The performance of the proposed data detection method is very close to that of Maximum-Likelihood (ML) data detection when the channel is perfectly known. We also propose an SVM-based joint Channel Estimation and Data Detection (CE-DD) method, which makes use of both the to-be-decoded data vectors and the pilot data vectors to improve the estimation and detection performance. Finally, an extension of the proposed methods to OFDM systems with frequency-selective fading channels is presented. Simulation results show that the proposed methods are efficient and robust, and also outperform existing ones
    • …
    corecore