885 research outputs found

    An alternative marginal likelihood estimator for phylogenetic models

    Get PDF
    Bayesian phylogenetic methods are generating noticeable enthusiasm in the field of molecular systematics. Many phylogenetic models are often at stake and different approaches are used to compare them within a Bayesian framework. The Bayes factor, defined as the ratio of the marginal likelihoods of two competing models, plays a key role in Bayesian model selection. We focus on an alternative estimator of the marginal likelihood whose computation is still a challenging problem. Several computational solutions have been proposed none of which can be considered outperforming the others simultaneously in terms of simplicity of implementation, computational burden and precision of the estimates. Practitioners and researchers, often led by available software, have privileged so far the simplicity of the harmonic mean estimator (HM) and the arithmetic mean estimator (AM). However it is known that the resulting estimates of the Bayesian evidence in favor of one model are biased and often inaccurate up to having an infinite variance so that the reliability of the corresponding conclusions is doubtful. Our new implementation of the generalized harmonic mean (GHM) idea recycles MCMC simulations from the posterior, shares the computational simplicity of the original HM estimator, but, unlike it, overcomes the infinite variance issue. The alternative estimator is applied to simulated phylogenetic data and produces fully satisfactory results outperforming those simple estimators currently provided by most of the publicly available software

    Statistical Phylogenetic Tree Analysis Using Differences of Means

    Get PDF
    We propose a statistical method to test whether two phylogenetic trees with given alignments are significantly incongruent. Our method compares the two distributions of phylogenetic trees given by the input alignments, instead of comparing point estimations of trees. This statistical approach can be applied to gene tree analysis for example, detecting unusual events in genome evolution such as horizontal gene transfer and reshuffling. Our method uses difference of means to compare two distributions of trees, after embedding trees in a vector space. Bootstrapping alignment columns can then be applied to obtain p-values. To compute distances between means, we employ a "kernel trick" which speeds up distance calculations when trees are embedded in a high-dimensional feature space, e.g. splits or quartets feature space. In this pilot study, first we test our statistical method's ability to distinguish between sets of gene trees generated under coalescence models with species trees of varying dissimilarity. We follow our simulation results with applications to various data sets of gophers and lice, grasses and their endophytes, and different fungal genes from the same genome. A companion toolkit, {\tt Phylotree}, is provided to facilitate computational experiments.Comment: 17 pages, 6 figure

    Evolutionary Inference via the Poisson Indel Process

    Full text link
    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classical evolutionary process, the TKF91 model, is a continuous-time Markov chain model comprised of insertion, deletion and substitution events. Unfortunately this model gives rise to an intractable computational problem---the computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a new stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The new model is closely related to the TKF91 model, differing only in its treatment of insertions, but the new model has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared to separate inference of phylogenies and alignments.Comment: 33 pages, 6 figure
    • …
    corecore