1,306 research outputs found

    A self-powered single-chip wireless sensor platform

    Get PDF
    Internet of things” require a large array of low-cost sensor nodes, wireless connectivity, low power operation and system intelligence. On the other hand, wireless biomedical implants demand additional specifications including small form factor, a choice of wireless operating frequencies within the window for minimum tissue loss and bio-compatibility This thesis describes a low power and low-cost internet of things system suitable for implant applications that is implemented in its entirety on a single standard CMOS chip with an area smaller than 0.5 mm2. The chip includes integrated sensors, ultra-low-power transceivers, and additional interface and digital control electronics while it does not require a battery or complex packaging schemes. It is powered through electromagnetic (EM) radiation using its on-chip miniature antenna that also assists with transmit and receive functions. The chip can operate at a short distance (a few centimeters) from an EM source that also serves as its wireless link. Design methodology, system simulation and optimization and early measurement results are presented

    Improving the mechanistic study of neuromuscular diseases through the development of a fully wireless and implantable recording device

    Get PDF
    Neuromuscular diseases manifest by a handful of known phenotypes affecting the peripheral nerves, skeletal muscle fibers, and neuromuscular junction. Common signs of these diseases include demyelination, myasthenia, atrophy, and aberrant muscle activity—all of which may be tracked over time using one or more electrophysiological markers. Mice, which are the predominant mammalian model for most human diseases, have been used to study congenital neuromuscular diseases for decades. However, our understanding of the mechanisms underlying these pathologies is still incomplete. This is in part due to the lack of instrumentation available to easily collect longitudinal, in vivo electrophysiological activity from mice. There remains a need for a fully wireless, batteryless, and implantable recording system that can be adapted for a variety of electrophysiological measurements and also enable long-term, continuous data collection in very small animals. To meet this need a miniature, chronically implantable device has been developed that is capable of wirelessly coupling energy from electromagnetic fields while implanted within a body. This device can both record and trigger bioelectric events and may be chronically implanted in rodents as small as mice. This grants investigators the ability to continuously observe electrophysiological changes corresponding to disease progression in a single, freely behaving, untethered animal. The fully wireless closed-loop system is an adaptable solution for a range of long-term mechanistic and diagnostic studies in rodent disease models. Its high level of functionality, adjustable parameters, accessible building blocks, reprogrammable firmware, and modular electrode interface offer flexibility that is distinctive among fully implantable recording or stimulating devices. The key significance of this work is that it has generated novel instrumentation in the form of a fully implantable bioelectric recording device having a much higher level of functionality than any other fully wireless system available for mouse work. This has incidentally led to contributions in the areas of wireless power transfer and neural interfaces for upper-limb prosthesis control. Herein the solution space for wireless power transfer is examined including a close inspection of far-field power transfer to implanted bioelectric sensors. Methods of design and characterization for the iterative development of the device are detailed. Furthermore, its performance and utility in remote bioelectric sensing applications is demonstrated with humans, rats, healthy mice, and mouse models for degenerative neuromuscular and motoneuron diseases

    Fabrication and characterization of hybrid energy harvesting microdevices

    Get PDF
    In this dissertation, a hybrid energy harvesting system based on a lead zirconate titanate (PZT) and carbon nanotube film (CNF) cantilever structure has been designed, fabricated and studied. It has the ability to harvest light and thermal radiation energy from ambient energy and convert them to electricity. The proposed micro-scale energy harvesting device consists of a composite cantilever beam (SU-8/CNF/Pt/PZT/Pt) which is fixed on a silicon based anchor and two electrode pads for wire bonding. The CNF acts as an antenna to receive radiation energy and convert it to heat energy and then transfer to the whole cantilever structure. The CNF will also convert the radiation energy to a non-uniform distributed static charge. These are two major reasons that cause the cantilever to bend and give the ability of cyclic bending back and forth of the cantilever. The PZT layer, in turn, converts the mechanical energy of repeated deformation of the cantilever to electricity by the piezoelectric effect. First, the cyclic bending capability of the composite cantilever when receiving radiation energy, named self-reciprocation, has been evaluated by copper-CNF cantilever structures and the proposed mechanisms have been discussed. Based on this idea, a prototype macro-scale device with PZT and CNF integrated has been used to verify the possibility of harvesting energy from light and thermal sources by the self-reciprocation phenomenon. Open circuit voltage (OCV) output recorded from the prototype device showed continuous oscillation while a constant radiation source was presented. The proposed micro-scale energy harvesting device was then designed and the fabrication process flow has been developed using surface and bulk micromachining techniques. The fabricated device was polarized in a strong electric field at raised temperature to boost the piezoelectric coefficient. A validation step is designed to pick out the working devices before testing. The functioned device was then tested and successfully demonstrated to harvest energy from light and thermal sources. The result showed the power density of the micro-scale device is 4,445 times higher than the macro-scale prototype device calculated from the maximum power transfer theorem. It was found that the electric output of the micro-scale device contains not only the AC component as the prototype device but also a DC bias shift added to the AC component. An equivalent structure model of the micro-scale device was established to study the electric output characteristic. It was realized that the DC bias shift is generated from the thermoelectric effect (Seebeck effect) by controlled experiments and analysis. The performance of the micro device was studied under different levels of light and thermal radiation conditions. The relationship between output (both DC and AC components of open circuit voltage and short circuit current) and input (light and thermal energy) were analyzed by the least square regression method. The device was taken out of the laboratory to demonstrate its ability to harvest energy in ambient conditions. Both the DC and AC components of the open circuit voltage (electricity) were able to be generated from the solar and wind energy. The power density generated from a single device was about 4 µW/cm2. Further enhancement of the power density was proved by concentrating solar energy on the device with a magnifier and operating an arrayed device

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Human movement energy harvesting : a non-linear electromagnetic approach

    Get PDF
    Energy harvesting is one of the methods that currently engage actively in energy “recycling”. Of the many energy sources that carry the potential to have energy harvested and recycled, humans are seen as a potential source of energy. High amounts of energy are wasted from daily activities that humans do, if only a portion of the wasted energy can be harvested and reused with the aim of improving the quality of life of the user.To do that, the accelerations of selected movements are recorded from sensors attached to four different locations of the body. Human movements operate on a low and wide frequency scale, nonlinear energy harvesting techniques is seen as a suitable technique to be applied. Nonlinear energy harvesting techniques are expected to increase the bandwidth of operation of the energy harvester. The electromagnetic method of transduction is also selected (using two opposing magnets) to be paired with the nonlinear energy harvesting techniques to evaluate the potential of energy harvesting from human movements. The pick-up coil to be used will be placed at a novel location within the energy harvester prototype.Through simulations and experiments, frequency responses obtained did show an increase in bandwidth which agrees with literature from nonlinear energy harvesting techniques. Phase portraits are also used to provide a more in depth understanding on the movements from the cantilever under linear and nonlinear dynamics. Result comparisons were made between the simulation model and the experimental prototype to verify the agreement between the two.Additionally, results obtained also showed that the resonant frequency of the system was reduced when operating under the nonlinear regime. These attribute favour energy harvesting though human movements.Finally, the novel placement of the pick-up coil within the nonlinear electromagnetic energy harvester had the desired effect. Similar power outputs were achieved even though the separation distances between the two opposing magnets were varied

    On-Demand Energy Harvesting Techniques - A System Level Perspective

    Get PDF
    In recent years, energy harvesting has been generating great interests among researchers, scientists and engineers alike. One of the major reasons for this increased interest sterns from the desire to have autonomous perpetual power supplies for remote monitoring sensor nodes utilizing some of the already available and otherwise wasted energy in the environment in a very innovative and useful way (and at the same time, maintaining a green environment). Scientists and engineers are constantly looking for ways of obtaining continuous and uninterrupted data from several points of interests especially remote or dangerous locations, using sensors coupled with RF transceivers, without the need of ever replacing or recharging the batteries that power these devices. This is now made possible through energy harvesting technologies which serve as suitable power supply substitutes, in many cases, for low power devices. With the proliferation of wireless energy in the environment through different radio frequency bands as well as natural sources like solar, wind and heat energy, it has become a desirable thing to take advantage of their availability by harvesting and converting them to useful electrical energy forms. The energy so harnessed or harvested could then be utilized in sensor nodes. Now, since these energy sources fluctuate from time to time, and from place to place, there is the need to have a form of energy accumulation, conversion, conditioning and storage. The stored energy would then be reconverted and used by the sensors nodes and/or RF transceivers when needed. The process through which this is done is referred to as energy management. In this research work, many types of energy harvesting transducers were explored including – solar, thermal, electromagnetic and piezo/vibration. A proof of concept approach for an on-demand electromagnetic power generator is then presented towards the end. While most, if not all, of the energy harvesting techniques discussed needed some time to accumulate enough charge to operate their respective systems, the on-demand energy harvester makes energy available as at and when needed. In summary, a system level design is presented with suggested future research works

    Functional modelling and prototyping of electronic integrated kinetic energy harvesters

    Get PDF
    The aim of developing infinite-life autonomous wireless electronics, powered by the energy of the surrounding environment, drives the research efforts in the field of Energy Harvesting. Electromagnetic and piezoelectric techniques are deemed to be the most attractive technologies for vibrational devices. In the thesis, both these technologies are investigated taking into account the entire energy conversion chain. In the context of the collaboration with the STMicroelectronics, the project of a self-powered Bluetooth step counter embedded in a training shoe has been carried out. A cylindrical device 27 Ă— 16mm including the transducer, the interface circuit, the step-counter electronics and the protective shell, has been developed. Environmental energy extraction occurs exploiting the vibration of a permanent magnet in response to the impact of the shoe on the ground. A self-powered electrical interface performs maximum power transfer through optimal resistive load emulation and load decoupling. The device provides 360 ÎĽJ to the load, the 90% of the maximum recoverable energy. The energy requirement is four time less than the provided and the effectiveness of the proposed device is demonstrated also considering the foot-steps variability and the performance spread due to prototypes manufacturing. In the context of the collaboration with the G2Elab of Grenoble and STMicroelectronics, the project of a piezoelectric energy arvester has been carried out. With the aim of exploiting environmental vibrations, an uni-morph piezoelectric cantilever beam 60Ă—25Ă—0.5mm with a proof mass at the free-end has been designed. Numerical results show that electrical interfaces based on SECE and sSSHI techniques allows increasing performance up to the 125% and the 115% of that in case of STD interface. Due to the better performance in terms of harvested power and in terms of electric load decoupling, a self-powered SECE interface has been prototyped. In response to 2 m/s2 56,2 Hz sinusoidal input, experimental power recovery of 0.56mW is achieved demonstrating that the device is compliant with standard low-power electronics requirements
    • …
    corecore