8,313 research outputs found

    Evaluation of Energy Costs and Error Performance of Range-Aware Anchor-Free Localization Algorithms for Wireless Sensor Networks

    Get PDF
    This research examines energy and error tradeoffs in Anchor-Free Range-Aware Wireless Sensor Network (WSN) Localization algorithms. A concurrent and an incremental algorithm (Anchor Free Localization (AFL) and Map Growing) are examined under varying network sizes, densities, deployments, and range errors. Despite current expectations, even the most expensive configurations do not expend significant battery life (at most 0.4%), implying little energy can be conserved during localization. Due to refinement, AFL is twice as accurate, using 6 times the communication. For both, node degree affects communication most. As degree increases, Map Growing communication increases, while AFL transmissions drop. Nodes with more neighbors refine quicker with fewer messages. At high degree, many nodes receive the same message, overpowering the previous effect, and raising AFL received bits. Built from simulation data, the Energy Consumption Model predicts energy usage of incremental and concurrent algorithms used in networks with varying size, density, and deployments. It is applied to current wireless sensor nodes. Military WSNs should be flexible, cheap, and long lasting. Anchor-Free, Range-Aware algorithms best fit this need

    Dead Reckoning Localization Technique for Mobile Wireless Sensor Networks

    Full text link
    Localization in wireless sensor networks not only provides a node with its geographical location but also a basic requirement for other applications such as geographical routing. Although a rich literature is available for localization in static WSN, not enough work is done for mobile WSNs, owing to the complexity due to node mobility. Most of the existing techniques for localization in mobile WSNs uses Monte-Carlo localization, which is not only time-consuming but also memory intensive. They, consider either the unknown nodes or anchor nodes to be static. In this paper, we propose a technique called Dead Reckoning Localization for mobile WSNs. In the proposed technique all nodes (unknown nodes as well as anchor nodes) are mobile. Localization in DRLMSN is done at discrete time intervals called checkpoints. Unknown nodes are localized for the first time using three anchor nodes. For their subsequent localizations, only two anchor nodes are used. The proposed technique estimates two possible locations of a node Using Bezouts theorem. A dead reckoning approach is used to select one of the two estimated locations. We have evaluated DRLMSN through simulation using Castalia simulator, and is compared with a similar technique called RSS-MCL proposed by Wang and Zhu .Comment: Journal Paper, IET Wireless Sensor Systems, 201
    • …
    corecore