74 research outputs found

    Hibernation Mechanism in Smartphone Mobile Operating Systems

    Get PDF
    Smartphone technology is advancing at a rapid pace. They are able to run more applications at a time which needs proper management of running processes especially when the processes are accidently lost due to critical battery that causes the device switch off. Therefore data loss occurs and there is no option to retrieve the lost data. In this paper, Hibernation approach for smartphones mobile operating system has been considered. Initially working of smart phones has been analyzed in order to find out their working mechanism. Hibernation approach is also discussed along with its structure. A mechanism has been proposed for smartphones based on hibernation called Hibernation Mechanism in Smartphones (HMS). HMS has been proposed for Smartphones in order to prevent application losses, thereby, giving proper management to smartphone users. Keywords:Hibernation Mechanism in Smartphones (HMS), Prevent application losses and Proper management

    ์œ ๊ธฐ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ ํ‘œ์‹œ์žฅ์น˜๋ฅผ ์žฅ์ฐฉํ•œ ์ด๋™ํ˜• ์‹œ์Šคํ…œ์˜ ์ „๋ ฅ ๊ณต๊ธ‰ ์ตœ์ ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2012. 8. ์žฅ๋ž˜ํ˜.์˜ค๋Š˜๋‚  ์Šค๋งˆํŠธํฐ, ํƒœ๋ธ”๋ฆฟ PC ์™€ ๊ฐ™์€ ํœด๋Œ€์šฉ ์ „์ž๊ธฐ๊ธฐ๋Š” ๊ณ ์„ฑ๋Šฅ์˜ ์ค‘์•™์ฒ˜๋ฆฌ์žฅ์น˜ (CPU), ๋Œ€์šฉ๋Ÿ‰ ๋ฉ”๋ชจ๋ฆฌ, ๋Œ€ํ˜• ํ™”๋ฉด, ๊ณ ์†์˜ ๋ฌด์„  ์ธํ„ฐํŽ˜์ด์Šค ๋“ฑ์„ ํƒ‘์žฌํ•จ์—๋”ฐ๋ผ ์ „ ๋ ฅ ์†Œ๋ชจ๋Ÿ‰์ด ๊ธ‰์†ํžˆ ์ฆ๊ฐ€ํ•˜์—ฌ ๊ทธ ์ „๋ ฅ ์†Œ๋ชจ๋Š” ์ด๋ฏธ ์†Œํ˜•์˜ ๋žฉํƒ‘ ์ปดํ“จํ„ฐ ์ˆ˜์ค€์— ์ด๋ฅด๊ณ  ์žˆ๋‹ค. ์„ฑ๋Šฅ๊ณผ ์ „๋ ฅ ์†Œ๋ชจ๋Ÿ‰์˜ ์ธก๋ฉด์—์„œ ํœด๋Œ€์šฉ ์ „์ž๊ธฐ๊ธฐ์™€ ๋žฉํƒ‘ ์ปดํ“จํ„ฐ ์‚ฌ ์ด์˜ ๊ตฌ๋ถ„์ด ์ ์ฐจ ์‚ฌ๋ผ์ง€๊ณ  ์žˆ์Œ์—๋„ ๋ฐฐํ„ฐ๋ฆฌ ๋ฐ ์ „๋ ฅ ๋ณ€ํ™˜ ํšŒ๋กœ๋Š” ๊ธฐ์กด์˜ ์„ค๊ณ„ ์›์น™๋“ค๋งŒ์„ ๋”ฐ๋ผ ์„ค๊ณ„๋˜๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ์‚ผ์„ฑ์ „์ž์˜ ๊ฐค๋Ÿญ์‹œ ํƒญ ๋ฐ Apple ์‚ฌ์˜ iPad ๋“ฑ ์Šค๋งˆํŠธํฐ ๋ฐ ํƒœ๋ธ”๋ฆฟ PC์˜ ๊ฒฝ์šฐ 1-cell ์ง๋ ฌ ๋ฆฌํŠฌ ์ด์˜จ ์ „์ง€๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐ˜ ๋ฉด, ๋žฉํƒ‘ ์ปดํ“จํ„ฐ์˜ ๊ฒฝ์šฐ๋Š” ์ œ์กฐ์‚ฌ์— ๋”ฐ๋ผ 3-cell ์—์„œ 5-cell ์ง๋ ฌ ๋“ฑ์œผ๋กœ ์„ค๊ณ„๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ๋ฐฐํ„ฐ๋ฆฌ ์ถœ๋ ฅ ์ „์••์„ ๋‹ค๋ฅด๊ฒŒ ํ•จ์œผ๋กœ์จ ์ „๋ ฅ ๋ณ€ํ™˜ ํšจ์œจ์— ์˜ํ–ฅ์„ ์ค€๋‹ค. ์ „๋ ฅ ๋ณ€ํ™˜ ํšŒ๋กœ์˜ ํšจ์œจ ๋ฐ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ˆ˜๋ช…์€ ์ž…์ถœ๋ ฅ ์ „์••/์ „๋ฅ˜๋ฅผ ๋น„๋กฏํ•œ ๋™์ž‘ ํ™˜๊ฒฝ์˜ ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค. ํœด๋Œ€์šฉ ์ „์ž๊ธฐ๊ธฐ์— ์‚ฌ์šฉ๋˜๋Š” ๊ฐ์ข… ์ „์ž๋ถ€ํ’ˆ์€ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ๋“ค์„ ๊ตฌํ˜„ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ค‘์•™์ฒ˜๋ฆฌ์žฅ์น˜์˜ ๋™์  ์ „์••/์ฃผํŒŒ ์ˆ˜ ์กฐ์ ˆ ๊ธฐ๋ฒ• ๋“ฑ ๊ณต๊ธ‰์ „์••์˜ ๋ณ€ํ™”๋ฅผ ์ˆ˜๋ฐ˜ํ•˜๋Š” ๊ธฐ๋ฒ• ์—ญ์‹œ ๋‹ค์–‘ํ•˜๊ฒŒ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ๊ฐ ์žฅ์น˜์˜ ๊ณต๊ธ‰ ์ „์•• ๋ฐ ์ „๋ฅ˜์˜ ๋ณ€ํ™”๋กœ ์ธํ•œ ์ „๋ ฅ ๋ณ€ํ™˜ ํšŒ๋กœ์˜ ํšจ์œจ์˜ ๋ณ€ํ™” ๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ค‘์•™์ฒ˜๋ฆฌ์žฅ์น˜, ๋””์Šคํ”Œ๋ ˆ์ด ๋“ฑ ์ฃผ์š” ์ „๋ ฅ ์†Œ๋น„ ์žฅ์น˜์˜ ์ „๋ ฅ ์ ˆ๊ฐ ๊ธฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•  ๋•Œ์—๋Š” ๊ฐœ๋ณ„ ์žฅ์น˜์˜ ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„์ด๋Š” ๊ฒƒ๊ณผ ๋™์‹œ์— ๊ฐœ๋ณ„ ์žฅ ์น˜์˜ ๋™์ž‘ ํ–‰ํƒœ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ๋ถ„์„์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๋ฐฐํ„ฐ๋ฆฌ, ์ „๋ ฅ ๋ณ€ํ™˜ํšŒ๋กœ์˜ ์„ค๊ณ„๊ฐ€ ํ•จ๊ป˜์ด๋ฃจ์–ด์ ธ์•ผ ํ•œ๋‹ค. ์„ ํ–‰ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋ฐฐํ„ฐ๋ฆฌ์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•œ ๋ฐฐํ„ฐ๋ฆฌ ๊ตฌ์„ฑ์˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค [1]. ์ค‘์•™์ฒ˜๋ฆฌ์žฅ์น˜์˜ ๋™์  ์ „์••/์ฃผํŒŒ์ˆ˜ ์ œ์–ด ๊ธฐ๋ฒ•์— ์ด์–ด ์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ(OLED) ๊ธฐ๋ฐ˜ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋™์  ๊ตฌ๋™ํšŒ๋กœ ๊ณต๊ธ‰ ์ „์•• ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค [2]. ์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค ์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด๋Š” ์ „๋ ฅ ์†Œ๋ชจ ๋ฐ ์‹œ์•ผ๊ฐ ๋“ฑ ๊ธฐ์กด ์•ก์ • ํ‘œ์‹œ์žฅ์น˜์— ๋น„ํ•ด ์—ฌ๋Ÿฌ ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” ์ฐจ์„ธ๋Œ€ ๋””์Šคํ”Œ๋ ˆ์ด ์žฅ์น˜์ด๋‹ค. ์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค ์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ ์€ ์ „๋ ฅ ์†Œ๋ชจ๋Ÿ‰์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ™”๋ฉด์˜ ๋Œ€ํ˜•ํ™” ๋ฐ ํ•ด์ƒ๋„์˜ ๊ณ ๋ฐ€๋„ํ™”์— ๋”ฐ๋ผ ์‹œ์Šคํ…œ ์ „๋ ฅ ์†Œ๋ชจ์—์„œ ์—ฌ์ „ํžˆ ํฐ ๋น„์ค‘์„ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๋‹ค. ์œ ๊ธฐ๋ฐœ ๊ด‘๋‹ค์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋™์  ๊ตฌ๋™ํšŒ๋กœ ๊ณต๊ธ‰ ์ „์•• ๊ธฐ๋ฒ•(OLED DVS)๋Š” ์ƒ‰์ƒ์˜ ๋ณ€ํ™”์˜ ๊ธฐ์ดˆํ•œ ๊ธฐ์กด์˜ ์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด ์ „๋ ฅ ์ ˆ๊ฐ ๊ธฐ๋ฒ•๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์ตœ ์†Œํ•œ์˜ ์ด๋ฏธ์ง€ ์™œ๊ณก๋งŒ์„ ์ˆ˜๋ฐ˜ํ•˜์—ฌ ๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ์ง„, ๋™์˜์ƒ ๋“ฑ์— ์ ์šฉ๊ฐ€๋Šฅํ•œ ์ „๋ ฅ ์ ˆ๊ฐ ๊ธฐ๋ฒ•์ด๋‹ค. ํ•ด๋‹น ๊ธฐ๋ฒ•์€ ๊ณต๊ธ‰ ์ „์••์˜ ๋ณ€ํ™”์‹œํ‚ฌ ํ•„์š”๊ฐ€ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์‹œ์Šคํ…œ์— ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ํ†ตํ•ฉ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ „๋ ฅ ๋ณ€ํ™˜ ํšŒ๋กœ ๋ฐ ๋ฐฐํ„ฐ๋ฆฌ ๊ตฌ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ „๋ ฅ ์†Œ๋ชจ์™€ ํ•จ๊ป˜ ์ „์ฒด ์‹œ์Šค ํ…œ ํšจ์œจ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ•จ๊ป˜ ๊ณ ๋ คํ•˜์—ฌ ์‹œ์Šคํ…œ์„ ์ตœ์ ํ™”ํ•œ๋‹ค. ๋ฐฐํ„ฐ๋ฆฌ ๊ตฌ์„ฑ ์—ญ ์‹œ ๊ธฐ์กด์˜ ์„ค๊ณ„ ํ‘œ์ค€ ๋Œ€์‹  ์ฒด๊ณ„์ ์ธ ์‹œ์Šคํ…œ ๋ถ„์„์— ๊ธฐ๋ฐ˜ํ•œ ์ตœ์ ํ™”๊ฐ€ ์‹œ๋„๋˜์—ˆ๋‹ค. ๊ณต๊ธ‰์ „์••์ด ์กฐ์ ˆ ๊ฐ€๋Šฅํ•œ ์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด ํ•˜๋“œ์›จ์–ด ๋ฐ ์ œ์–ด๊ธฐ ์‹œ์Šค ํ…œ-์˜จ-์นฉ (System-on-a-chip, SoC) ๊ฐ€ ์ œ์ž‘๋˜์—ˆ๊ณ , ๊ทธ ๋™์ž‘ ํŠน์„ฑ์ด ๋ถ„์„๋˜์—ˆ๋‹ค. ๊ธฐ์กด ์Šค๋งˆํŠธํฐ ๋ฐ ํƒœ๋ธ”๋ฆฟ PC ๊ฐœ๋ฐœ์šฉ ํ”Œ๋žซํผ์˜ ์ „๋ ฅ ๋ณ€ํ™˜ ํšจ์œจ ๋ฐ ๋™์ž‘ ํŠน์„ฑ ์—ญ์‹œ ๋ถ„์„ ๋˜์—ˆ๋‹ค. ์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋™์  ๊ตฌ๋™ํšŒ๋กœ ๊ณต๊ธ‰ ์ „์•• ๊ธฐ๋ฒ•์˜ ๋™์ž‘ ํŠน์„ฑ ๋ฐ ์Šค๋งˆํŠธํฐ ํ”Œ๋žซํผ์˜ ๋™์ž‘ ํŠน์„ฑ, ๋ฐฐํ„ฐ๋ฆฌ ํŠน์„ฑ์— ๋Œ€ํ•œ ๋ถ„์„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ์Šค ํ…œ ์ˆ˜์ค€์—์„œ์˜ ์ „๋ ฅ ๋ณ€ํ™˜ ํšจ์œจ์ด ์ตœ์ ํ™”๋˜์—ˆ๋‹ค.Modern mobile devices such as smartphone or tablet PC are typically equipped a high-performance CPU, memory, wireless interface, and display. As a result, their power consumption is as high as a small-size laptop computer. The boundary between the mobile devices and laptop computer is becoming unclear from the perspective of the performance and power. However, their battery and related power conversion architecture are only designed according to the legacy design so far. Smartphone and tablet PCs from major vendors such as iPad from Apple or Galaxy-tab from Samsung uses 1-cell Li-ion battery. The laptop PC typically has 3-cell Li-ion battery. The output voltage of the battery affect system-level power conversion efficiency. Furthermore, traditional power conversion architecture in the mobile computing system is designed only considering the fixed condition where the system-level low-power techniques such as DVFS are becoming mandatory. Such a low-power techniques applied to the major components result in not only load demand fluctuation but also supply voltage changing. It has an effect on the battery lifetime as well as the system-level power delivery efficiency. The efficiency is affected by the operating condition including input voltage, output voltage, and output current. We should consider the operating condition of the major power consumer such as a display to enhance the system-level power delivery efficiency. Therefore, we need to design the system not only from the perspective of the power consumption but also energy storage design. The optimization of battery setup considering battery characteristics was presented in [1]. Beside the DVFS of microprocessor, a power saving technique based on the supply voltage scaling of the OLED driver circuit was recently introduced [2]. An organic light emitting diode (OLED) is a promising display device which has a lot of advantages compared with conventional LCD, but it still consumes significant amount of power consumption due to the size and resolution increasing. The OLED dynamic voltage scaling (OLED DVS) technique is the first OLED display power saving technique that induces only minimal color change to accommodate display of natural images where the existing OLED low-power techniques are based on the color change. The OLED DVS incurs supply voltage change. Therefore we need to consider the system-level power delivery efficiency and battery setup to properly integrate the DVS-enabled OLED display to the system. In this dissertation, we not only optimize the power consumption of the OLED display but also consider its effect on the whole system power efficiency. We perform the optimization of the battery setup by a systematic method instead of the legacy design rule. At first, we develop an algorithm for the OLED DVS for the still images and a histogram-based online method for the image sequence with a hardware board and a SoC. We characterize the behavior of the OLED DVS. Next, we analyze the characteristics of the smartphone and tablet-PC platforms by using the development platforms. We profile the power consumption of each components in the smartphone and power conversion efficiency of the boost converter which is used in the tablet-PC for the display devices. We optimize not only the power consuming components or the conversion system but also the energy storage system based on the battery model and system-level power delivery efficiency analysis.1 Introduction 1.1 Supply Voltage Scaling for OLED Display 1.2 Power Conversion Efficiency in MobileSystems 1.3 Research Motivation 2 Related Work 2.1 Low-Power Techniques for Display Devices 2.1.1 Light Source Control-Based Approaches 2.1.2 User Behavior-Based Approaches 2.1.3 Low-Power Techniques for Controller and Framebuffer 2.1.4 Pre-ChargingforOLED 2.1.5 ColorRemapping 2.2 Battery discharging efficiency aware low-power techniques 2.2.1 Parallel Connection 2.2.2 Constant-Current Regulator-Based Architecture 2.3 System-level power analysis techniques 3 Preliminary 38 3.1 Organic Light Emitting Diode (OLED) Display 3.1.1 OLED Cell Architecture 3.1.2 OLED Panel Architecture 3.1.3 OLED Driver Circuits 3.2 Effect of VDD scaling on driver circuits 3.2.1 VDD scaling for AM drivers 3.2.2 VDD scaling for PWM drivers 4 Supply Voltage Scaling and Image Compensation of OLED displays 4.1 Image quality and power models of OLED panels 4.2 OLED display characterization 4.3 VDD scaling and image compensation 5 OLED DVS implementation 5.1 Hardware prototype implementation 5.2 OLED DVS System-on-Chip implementation 5.3 Optimization of OLED DVS SoC 5.4 VDD transition overhead 6 Power conversion efficiency and delivery architecture in mobile Systems 6.1 Power conversion efficiency model of switching-Mode DCโ€“DC converters 6.2 Power conversion efficiency model of linear regulator power loss model 6.3 Rate Capacity Effect of Li-ion Batteries 7 Power conversion efficiency-aware battery setup optimization with DVS- enabled OLED display 7.1 System-level power efficiency model 7.2 Power conversion efficiency analysis of smartphone platform 7.3 Power conversion efficiency for OLED power supply 7.4 Li-ion battery model 7.4.1 Battery model parameter extraction 7.5 Battery setup optimization 8 Experiments 8.1 Simulation result for OLED display with AM driver 8.2 Measurement result for OLED display with PWM driver 8.3 Design space exploration of battery setup with OLED displays 9 Conclusion 10 Future WorkDocto

    Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG gefรถrderten) Allianz- bzw. Nationallizenz frei zugรคnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The supply of critical metals like gallium, germanium, indium and rare earths elements (REE) is of technological, economic and strategic relevance in the manufacturing of electrical and electronic equipment (EEE). Recycling is one of the key strategies to secure the long-term supply of these metals. The dissipation of the metals related to the low concentrations in the products and to the configuration of the life cycle (short use time, insufficient collection, treatment focusing on the recovery of other materials) creates challenges to achieve efficient recycling. This article assesses the available data and sets priorities for further research aimed at developing solutions to improve the recycling of seven critical metals or metal families (antimony, cobalt, gallium, germanium, indium, REE and tantalum). Twenty-six metal applications were identified for those six metals and the REE family. The criteria used for the assessment are (i) the metal criticality related to strategic and economic issues; (ii) the share of the worldwide mine or refinery production going to EEE manufacturing; (iii) rough estimates of the concentration and the content of the metals in the products; (iv) the accuracy of the data already available; and (v) the occurrence of the application in specific WEEE groups. Eight applications were classified as relevant for further research, including the use of antimony as a flame retardant, gallium and germanium in integrated circuits, rare earths in phosphors and permanent magnets, cobalt in batteries, tantalum capacitors and indium as an indiumโ€“tin-oxide transparent conductive layer in flat displays.BMBF, 033R087A, rยณ - Strategische Metalle, Verbundvorhaben: UPGRADE - Integrierte Ansรคtze zur Rรผckgewinnung von Spurenmetallen und zur Verbesserung der Wertschรถpfung aus Elektro- und Elektronikaltgerรคten, TP1: รœbergreifendes Stoffstrommanagement und Design fรผr Recyclin

    TechNews digests: Jan - Nov 2009

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Ecolabelling. Criteria development for rechargeable batteries in ICT products

    Get PDF
    This research puts together two massive areas: voluntary certification programmes, specifically Type I ecolabelling (ISO 14024), aimed to incentivise and assist in providing customers with sustainable in all meanings products; and rechargeable batteries โ€“ inalienable element of portable electronic products. Moreover, the importance of batteries lifts up to an absolutely new level โ€“ with a rapid development of electric vehicles and energy storage systems, often used to accumulate energy from renewable energy sources. Mass application of rechargeable batteries in consumer electronic products, first of all, increases the number of batteries on the market, and, thus, the battery waste stream. Secondly, this encourages producers to search for new chemical compounds for the creation of batteries with the increased energy density and faster recharge time. Upcoming revision of the Battery Directive; application of new chemical compounds in cathodes production; potential risks associated with supply of such resources as cobalt and lithium; increased waste battery stream; the End-of-Life management; reaching higher rates for collection, sorting, and recycling of waste batteries; arising social conflicts around certain materials; product redesign and the necessity to be in compliance with the waste management hierarchy. All the listed aspects and challenges create a predisposition for Type I ecolabelling โ€“ to face these challenges and, thereby, to reconsider existing requirements to rechargeable batteries, initiating positive changes. This research aims to define new potential aspects and to improve existing criteria for rechargeable batteries in portable ICT products โ€“ to meet arising environmental and social challenges, related to all life cycle stages of rechargeable batteries. To achieve this, the author conducted a research, observing background on battery technologies and the battery market; current requirements of Type I ecolabelling programmes to both โ€“ ICT products equipped with rechargeable batteries, and rechargeable batteries themselves. Numerous stakeholders, from electronics producers, waste battery collectors, and recyclers โ€“ to battery specialists and certification programmes, contributed with their view on rechargeable batteries. The outcome of the research is the list of potential aspects of rechargeable batteries to be considered by Type I ecolabelling programmes for further implementation in the standards for mobile phones; tablets, laptops and notebook computers

    Energy Accounting and Optimization for Mobile Systems

    Get PDF
    Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been widely used by operating system based energy management. While various energy accounting policies have been tried, there is no known way to evaluate them directly simply because it is hard to track every hardware use by software in a heterogeneous multicore system like modern smartphones and tablets. This work provides the ground truth for energy accounting based on multi-player game theory and offers the first evaluation of existing energy accounting policies, revealing their important flaws. The proposed ground truth is based on Shapley value, a single value solution to multi-player games of which four axiomatic properties are natural and self-evident to energy accounting. This work further provides a utility optimization formulation of energy management and shows, surprisingly, that energy accounting does not matter for existing energy management solutions that control the energy use of a process by giving it an energy budget, or budget based energy management (BEM). This work shows an optimal energy management (OEM) framework can always outperform BEM. While OEM does not require any form of energy accounting, it is related to Shapley value in that both require the system energy consumption for all possible combination of processes under question. This work reports a prototype implementation of both Shapley value-based energy accounting and OEM based scheduling. Using this prototype and smartphone workload, this work experimentally demonstrates how erroneous existing energy accounting policies can be, show that existing BEM solutions are unnecessarily complicated yet underperforming by 20% compared to OEM

    Device characteristics-based differentiated energy-efficient adaptive solution for multimedia delivery over heterogeneous wireless networks

    Get PDF
    Energy ef๏ฌciency is a key issue of highest importance to mobile wireless device users, as those devices are powered by batteries with limited power capacity. It is of very high interest to provide device differentiated user centric energy efficient multimedia content delivery based on current application type, energy-oriented device features and user preferences. This thesis presents the following research contributions in the area of energy ef๏ฌcient multimedia delivery over heterogeneous wireless networks: 1. ASP: Energy-oriented Application-based System pro๏ฌling for mobile devices: This pro๏ฌling provides services to other contributions in this thesis. By monitoring the running applications and the corresponding power demand on the smart mobile device, a device energy model is obtained. The model is used in conjunction with applicationsโ€™ power signature to provide device energy constraints posed by running applications. 2. AWERA 3. DEAS: A Device characteristics-based differentiated Energy-ef๏ฌcient Adaptive Solution for video delivery over heterogeneous wireless networks. Based on the energy constraint, DEAS performs energy ef๏ฌcient content delivery adaptation for the current application. Unlike the existing solutions, DEAS takes all the applications running on the system into account and better balances QoS and energy ef๏ฌciency. 4. EDCAM 5. A comprehensive survey on state-of-the-art energy-ef๏ฌcient network protocols and energy-saving network technologies

    Analysis of material efficiency aspects of personal computers product group

    Get PDF
    This report has been developed within the project โ€˜Technical support for environmental footprinting, material efficiency in product policy and the European Platform on Life Cycle Assessmentโ€™ (LCA) (2013-2017) funded by the Directorate-General for Environment. The report summarises the findings of the analysis of material-efficiency aspects of the personal-computer (PC) product group, namely durability, reusability, reparability and recyclability. It also aims to identify material-efficiency aspects which can be relevant for the current revision of the Ecodesign Regulation (EU) No 617/2013. Special focus was given to the content of EU critical raw materials (CRMs) ( ) in computers and computer components, and how to increase the efficient use of these materials, including material savings thanks to reuse and repair and recovery of the products at end of life. The analysis has been based mainly on the REAPro method ( ) developed by the Joint Research Centre for the material-efficiency assessment of products. This work has been carried out in the period June 2016-September 2017, in parallel with the development of The preparatory study on the review of Regulation 617/2013 (Lot 3) โ€” computers and computer servers led by Viegand Maagรธe and Vlaamse Instelling voor Technologisch Onderzoek NV (VITO) (2017) ( ). During this period, close communication was maintained with the authors of the preparatory study. This allowed ensuring consistency between input data and assumptions of the two studies. Moreover, outcomes of the present research were used as scientific basis for the preparatory study for the analysis of material-efficiency aspects for computers. The research has been differentiated as far as possible for different types of computers (i.e. tablet, notebooks and desktop computers). The report starts with the analysis of the technical and scientific background relevant for material-efficiency aspects of computers, such as market sales, expected lifetime, bill of materials, and a focus on the content of CRMs (especially cobalt in batteries, rare earths including neodymium in hard disk drives and palladium in printed circuit boards). Successively the report analyses the current practices for repair, reuse and recycling of computers. Based on results available from the literature, material efficiency of the product group has the potential to be improved, in particular the lifetime extension. The residence time ( ) of IT equipment put on the market in 2000 versus 2010 generally declined by approximately 10 % (Huisman et al., 2012), while consumers expressed their preference for durable goods, lasting considerably longer than they are typically used (Wieser and Trรถger, 2016). Design barriers (such as difficulties for the disassembly of certain components or for their processing for data sanitisation) can hinder the repair and the reuse of products. Malfunction and accident rates are not negligible (IDC, 2016, 2010; SquareTrade, 2009) and difficulties in repair may bring damaged products to be discarded even if still functioning. Once a computer reaches the end of its useful life, it is addressed to โ€˜waste of electrical and electronic equipmentโ€™ (WEEE) recycling plants. Recycling of computers is usually based on a combination of manual dismantling of certain components (mainly components containing hazardous substances or valuable materials, e.g. batteries, printed circuit boards, display panels, data-storage components), followed by mechanical processing including shredding. The recycling of traditional desktop computers is perceived as non-problematic by recyclers, with the exception of some miniaturised new models (i.e. mini desktop computers), which still are not found in recycling plants and which could present some difficulties for the extraction of printed circuit boards and batteries (if present). The design of notebooks and tablets can originate some difficulties for the dismantling of batteries, especially for computers with compact design. Recycling of plastics from computers of all types is generally challenging due to the large use of different plastics with additives, such as flame retardants. According to all the interviewed recyclers, recycling of WEEE plastics with flame retardant is very poor or null with current technologies. Building on this analysis, the report then focuses on possible actions to improve material efficiency in computers, namely measures to improve (a) waste prevention, (b) repair and reuse and (c) design for recycling. The possible actions identified are listed hereinafter. (a) Waste prevention a.1 Implementation of dedicated functionality ( ) for the optimisation of the lifetime of batteries in notebooks: the lifetime of batteries could be extended by systematically implementing a preinstalled functionality on notebooks, which makes it possible to optimise the state of charge (SoC) of the battery when the device is used in grid operation (stationary). By preventing the battery remaining at full load when the notebook is in grid operation, the lifetime of batteries can be potentially extended by up to 50 %. Users could be informed about the existence and characteristics of such a functionality and the potential benefits related to its use. a.2 Decoupling external power supplies (EPS) from personal computers: the provision of information on the EPS specifications and the presence/absence of the EPS in the packaging of notebooks and tablets could facilitate the reuse by the consumer of already-available EPS with suitable characteristics. Such a measure could promote the use of common EPS across different devices, as well as the reuse of already-owned EPS. This would result in a reduction in material consumption for the production of unnecessary power supplies (and related packaging and transport) and overall a reduction of treatment of electronic waste. The International Electrotechnical Commission (IEC) technical specification (TS) 62700, the Standard Institute of Electrical and Electronics Engineers (IEEE) 1823 and Recommendation ITU-T L.1002 can be used to develop standards for the correct definition of connectors and power specifications. a.3 Provision of information about the durability of batteries: the analysis identified the existence of endurance tests suitable for the assessment of the durability of batteries in computers according to existing standards (e.g. EN 61960). The availability of information about these endurance tests could help users to get an indication on the residual capacity of the battery after a predefined number of charge/discharge cycles. Moreover, such information would allow for comparison between different products and potentially push the market towards longer-lasting batteries. a.4 Provision of information about the โ€˜liquid ingress protection (IP) classโ€™ for personal computers: this can be assessed for a notebook or tablet by performing specific tests, developed according to existing standards (e.g. IEC 60529). Users can be informed about the level of protection of the computer against the ingress of liquids (e.g. dripping water or spraying water or water jets) and in this way prevent one of the most common causes of computer failure. The yearly rate of estimated material saving if dedicated functionality for the optimisation of the lifetime of batteries (a.1) were used ranges from around 2 360 to 5 400 tonnes (t) of different materials per year. About 450 t of cobalt, 100 t of lithium, 210 t of nickel and 730 t of copper could be saved every year. The estimated potential savings of materials when EPS are decoupled from notebooks and tablets (a.2) are in the range 2 300-4 600 t/year (80 % related to the notebook category, and 20 % to tablets). These values can be obtained when 10-20 % of notebooks and tablets are sold without an EPS, as users can reuse already-owned and compatible EPS. Under these conditions, for example, about 190-370 t of copper can be saved every year. This estimate may increase when the same EPS can be used for both notebooks and tablets (at the moment the assessment is based on the assumption that the two product types were kept separated). Further work is needed to assess the potential improvements thanks to the provision of information about the durability of batteries (a.3), and about the โ€˜liquid-IP classโ€™ (a.4). The former option (a.3) has the potential to boost competition among battery manufacturers, resulting in more durable products. The latter option (a.4) has the potential to reduce computer damage due to liquid spillage, ranked among the most recurrent failure modes. (b) Repair/reuse b.1 and b.2 Provision of information to facilitate computer disassembly: the disassembly of relevant components (such as the display panel, keyboard, data storage, batteries, memory and internal power-supply units) plays a key role to enhance repair and reuse of personal computers. Some actions have therefore been discussed (b.1) to provide professional repair operators with documentation about the sequence of disassembly, extraction, replacement and reassembly operations needed for each relevant component of personal computers, and (b.2) to provide end-users with specific information about the disassembly and replacement of batteries in notebooks and tablets. b.3 Secure data deletion for personal computers: this is the process of deliberately, permanently and irreversibly erasing all traces of existing data from storage media, overwriting the data completely in such a way that access to the original data, or parts of them, becomes infeasible for a given level of effort. Secure data deletion is essential for the security of personal data and to allow the reuse of computers by a different user. Secure data deletion for personal computers can be ensured by means of built-in functionality. A number of existing national standards (HMG IS Standard No 5 (the United Kingdom), DIN 66399 (Germany), NIST 800-88r1 (the United States (US)) can be used as a basis to start standardisation activities on secure data deletion. The estimated potential savings of materials due to the provision of information and tools to facilitate computer disassembly were quantified in the range of 150-620 t/year for mobile computers (notebooks and tablets) within the first 2 years of use, and in the range of 610 2 460 t/year for mobile computers older than 2 years. Secure data deletion of personal computers, instead, is considered a necessary prerequisite to enhance reuse. The need to take action on this is related to policies on privacy and protection of personal data, as the General Data Protection Regulation (EU) 2016/679 and in particular its Article 25 on โ€˜data protection by design and by defaultโ€™. Future work is needed to strengthen the analysis, however it was estimated that secure data deletion has the potential to double volume of desktop, notebook and tablet computers reused after the first useful lifetime. (c) Recyclability c.1 Provision of information to facilitate computer dismantling: computers could be designed so that crucial components for material aspects (e.g. content of hazardous substances and/or valuable materials) can be easily identified and extracted in order to be processed by means of specific recycling treatments. Design for dismantling can focus on components listed in Annex VII of the WEEE directive ( ). The โ€˜ease of dismantlingโ€™ can be supported by the provision of relevant information (such as a diagram of the product showing the location of the components, the content of hazardous substances, instructions on the sequence of operations needed to remove these components, including type and number of fastening techniques to be unlocked, and tool(s) required). c.2 Marking of plastic components: although all plastics are theoretically recyclable, in practice the recyclability of plastics in computers is generally low, mainly due to the large amount of different plastic components with flame retardants (FRs) and other additives. Marking of plastic components according to existing standards (e.g. ISO 11469 and ISO 1043 series) can facilitate identification and sorting of plastic components during the manual dismantling steps of the recycling. c.3 FR content: according to all the recyclers interviewed, FRs are a major barrier to plastics recycling. Current mechanical-sorting processes of shredded plastics are characterised by low efficiency, while innovative sorting systems are still at the pilot stage and have been shown to be effective only in certain cases. Therefore, the provision of information on the content of FRs in plastic components is a first step to contribute to the improvement of plastics recycling. Plastics marking (as discussed above) can contribute to the separation of plastics with FRs during the manual dismantling, allowing for their recycling at higher rates (in line with the prescription of IEC/TR 62635, 2015). However, detailed information about FRs content could be given in a more systematised way, for example through the development of specific indexes. These indexes could support recyclers in checking the use of FRs in computers and in developing future processes and technologies suitable for plastics recycling. Moreover, these indexes could support policymakers in monitoring the use of FRs in the products and, in the medium-long term, to promote products that use smaller quantities of FRs. An example of a FR content index is provided in this report. c.4 Battery marks: the identification of the chemistry type of batteries in computers is necessary in order to have efficient identification and sorting, and thus to improve the material efficiency during the recycling. It is proposed to start standardisation activities to establish standard marking symbols for batteries. The examples of the โ€˜battery-recycle markโ€™, developed by the Battery Association of Japan (BAJ), and the current standardisation activities for the IEC 62902 (standard marking symbols for batteries with a volume higher than 900 cm3) may be used as references to develop ad hoc standards. The benefits of actions for the design for recycling can be relevant. In particular, the proposed actions should contribute to increase the amounts of materials that will be recycled (6 350-8 900 t/year), in particular plastics (5 950-7 960 t/year of additional plastics), but also metals such as cobalt (55-110 t), copper (240-610 t), rare earths as neodymium and dysprosium (2 7 t) and various precious metals (gold (0.1-0.4 t), palladium (0.1-0.4 t) and silver (2 7 t)). Compared to the amount of materials recycled in the EU (2012 data), these values would represent a recycling increase of 1-2 % for cobalt, 2-5 % for palladium, and 13-50 % for rare earths.JRC.D.3-Land Resource

    Energy-Aware Mobile Learning:Opportunities and Challenges

    Full text link
    • โ€ฆ
    corecore