34 research outputs found

    DISTRIBUTION NETWORK OPERATION WITH SOLAR PHOTOVOLTAIC AND ENERGY STORAGE TECHNOLOGY

    Get PDF
    Among distributed energy resources, solar photovoltaic (PV) generation has the largest penetration in the distribution networks. Serving electric vehicles (EV) with renewable resource generation would further reduce the carbon footprint of the energy supply chain for electric vehicles. However, the integration of solar PV and EVs in the unbalanced distribution network introduces several challenges including voltage fluctuations, voltage imbalances, reverse power flow, and protection devices’ malfunctions. The uncertainties associated with solar PV integration and electric vehicles operation require significant effort to develop accurate optimization methodologies in the unbalanced distribution systems operation. In this thesis, in order to cope with the uncertainties, we first developed a two-stage optimization problem, to identify the feasible dispatch margins of photovoltaic generation considering the distribution network operation constraints. The dispatch margins of photovoltaic generation are quantified considering the worst-case realization of demand in the distribution network. The linear and the second-order cone mathematical problem formulation is procured to solve the optimal power flow problem. Second, a data-driven distributionally robust optimization framework is proposed for the operation of the unbalanced distribution network considering the uncertainties associated with the interconnected EV fleets and solar PV generation, and the proposed framework leverages the column-and-constraint generation approach. Moreover, to minimize the operation cost and improve the ramping flexibility, a continuous-time optimization problem, is developed and reformulated to a linear programming problem using Bernstein polynomials. Here, a generalized exact linear reformulation of the data-driven distributionally robust optimization is used to capture the worst-case probability distribution of the net demand uncertainties. Furthermore, in this thesis, an interconnection of multi microgrids (MGs) technology is considered a promising solution to handle the variability of the distributed renewable energy resources and improve the energy resilience in the distribution network. The coordination among the microgrids in the distribution network could improve the operation cost, reliability, and security of the distribution network. Therefore, an adaptive robust distributed optimization framework is developed for the operation of a distribution network with interconnected microgrids considering the uncertainties in demand and solar PV generation

    A Cost-Efficient Communication Framework For Battery Switch Based Electric Vehicle Charging

    Get PDF
    Charging management for Electric Vehicles (EVs) on-the-move has become an increasingly important research problem in smart cities. Major technical challenges include the selection of Charging Stations (CSs) to guide charging plans, and the design of cost-efficient communication infrastructure between the power grid and EVs. In this article, we first present a brief review on state-of-the-art EV charging management schemes. Next, by incorporating battery switch technology to enable fast charging service, a Publish/Subscribe (P/S) communication framework is provisioned to support the EV charging service. Upon that, we develop a fully distributed charging management scheme with the consideration of urban travel uncertainties, e.g., traffic congestions and drivers’ preferences. This would benefit from low privacy sensitivity, as EVs’ status information will not be released through management. Results demonstrate a guidance for the provisioning of P/S communication framework to improve EV drivers’ experience, e.g., charging waiting time and total trip duration. Also, the benefit of P/S communication framework is reflected in terms of the communication efficiency. Open research issues of this emerging area are also presented

    Towards Holistic Charging Management for Urban Electric Taxi via a Hybrid Deployment of Battery Charging and Swap Stations

    Get PDF
    While previous studies focused on managing charging demand for private electric vehicles (EVs), we investigate ways of supporting the upgrade of an entire public urban electric taxi (ET) system. Concerning the coexistence of plugin charging stations (CSs) and battery swap stations (BSSs) in practice, it thus requires further efforts to design a holistic charging management especially for ETs. By jointly considering the combination of plug-in charging and battery swapping, a hybrid charging management framework is proposed in this paper. The proposed scheme is capable of guiding ETs to appropriate stations with time-varying requirements depending on how emergent the demand will be. Through the selection of battery charging/swap, the optimization goal is to reduce the trip delay of ET. Results under a Helsinki city scenario with realistic ETs and charging stations show the effectiveness of our enabling technology, in terms of minimized drivers’ trip duration, as well as charging performance gains at the ET and station sides

    Resilience of modern power distribution networks with active coordination of EVs and smart restoration

    Get PDF
    Abstract In this modern era of cyber–physical–social systems, there is a need of dynamic coordination strategies for electric vehicles (EVs) to enhance the resilience of modern power distribution networks (MPDNs). This paper proposes a two‐stage EV coordination framework for MPDN smart restoration. The first stage is to introduce a novel proactive EV prepositioning model to optimize planning prior to a rare event, and thereby enhance the MPDN survivability in its immediate aftermath. The second stage involves creating an advanced spatial–temporal EV dispatch model to maximize the number of available EVs for discharging, thereby improving the MPDN recovery after a rare event. The proposed framework also includes an information system to further enhance MPDN resilience by effectively organizing data exchange among intelligent transportation system and smart charging system, and EV users. In addition, a novel bidirectional geographic graph is proposed to optimize travel plans, covering a large penetration of EVs and considering variations in traffic conditions. The effectiveness is assessed on a modified IEEE 123‐node test feeder with real‐world transportation and charging infrastructure. The results demonstrate a significant improvement in MPDN resilience with smart restoration strategies. The validation and sensitivity analyses evidence a significant superiority of the proposed framework

    E-Mobility -- Advancements and Challenges

    Get PDF
    Mobile platforms cover a broad range of applications from small portable electric devices, drones, and robots to electric transportation, which influence the quality of modern life. The end-to-end energy systems of these platforms are moving toward more electrification. Despite their wide range of power ratings and diverse applications, the electrification of these systems shares several technical requirements. Electrified mobile energy systems have minimal or no access to the power grid, and thus, to achieve long operating time, ultrafast charging or charging during motion as well as advanced battery technologies are needed. Mobile platforms are space-, shape-, and weight-constrained, and therefore, their onboard energy technologies such as the power electronic converters and magnetic components must be compact and lightweight. These systems should also demonstrate improved efficiency and cost-effectiveness compared to traditional designs. This paper discusses some technical challenges that the industry currently faces moving toward more electrification of energy conversion systems in mobile platforms, herein referred to as E-Mobility, and reviews the recent advancements reported in literature

    Planning the Charging Infrastructure for Electric Vehicles in Cities and Regions

    Get PDF
    Planning the charging infrastructure for electric vehicles (EVs) is a new challenging task. This book treats all involved aspects: charging technologies and norms, interactions with the electricity system, electrical installation, demand for charging infrastructure, economics of public infrastructure provision, policies in Germany and the EU, external effects, stakeholder cooperation, spatial planning on the regional and street level, operation and maintenance, and long term spatial planning

    Planning the Charging Infrastructure for Electric Vehicles in Cities and Regions

    Get PDF
    Planning the charging infrastructure for electric vehicles (EVs) is a new challenging task. This book treats all involved aspects: charging technologies and norms, interactions with the electricity system, electrical installation, demand for charging infrastructure, economics of public infrastructure provision, policies in Germany and the EU, external effects, stakeholder cooperation, spatial planning on the regional and street level, operation and maintenance, and long term spatial planning

    Measuring & Mitigating Electric Vehicle Adoption Barriers

    Get PDF
    Transitioning our cars to run on renewable sources of energy is crucial to addressing concerns over energy security and climate change. Electric vehicles (EVs), vehicles that are fully or partially powered by batteries charged from the electrical grid, allow for such a transition. Specifically, if hydro, solar, and wind generation continues to be integrated into the global power system, we can power an EV-based transportation network cleanly and sustainably. To this end, major car manufacturers are now producing and marketing EVs. Unfortunately, at the time of this writing, drivers are slow to adopt EVs due to a number of concerns. The two greatest concerns are range anxiety—the fear of being stranded without power and the fear that necessary charging infrastructure does not exist—and the unknown return on investment of EVs over their lifetime. This thesis presents computational approaches for measuring and mitigating EV adoption barriers. Towards measuring the barriers to adoption, we build a sentiment analysis system for programmatically mining detailed perceptions towards EVs from ownership forums. In addition, we design the most comprehensive electric bike trial to date, which allows us to study several aspects of electric vehicles, including range anxiety, at a much lower cost. Towards mitigation, we develop algorithms for managing a network of gasoline vehicles to be used by EV owners when a planned trip exceeds the range of their EV. Further, we design a model for taxi companies to compute whether it is profitable to transition a fraction of their fleet to EVs. To summarize our findings, we find that sentiments towards EVs are very positive, especially regarding performance and maintenance, but there are concerns over range anxiety and the higher initial price of EVs. There is a delicate balance between these two adoption barriers. Larger batteries cost more, so alleviating range anxiety with larger batteries leads to pricier vehicles. Conversely, EVs with low range capabilities can also induce costs, because drivers and fleets that own EVs may have to often acquire (or own as an additional vehicle) a gasoline vehicle to fully meet their mobility demands. As a result, EVs are best suited for drivers and fleets that are able to make long-term return on investment calculations, and whose mobility patterns do not include many very long trips. Fleets can greatly reduce their operating costs by adopting EVs because they have the capital to make upfront investments that are profitable long-term. We show that even under conservative assumptions about revenue loss due to battery depletion, EVs are already profitable (the company saves more than enough money to recoup all initial investments) for a large taxi company in San Francisco. Similarly, EVs can be profitable for two-car families (those who already have a gasoline car) and for those who can easily acquire a gasoline vehicle when needed, hence our work on sizing networks of gasoline-vehicle pools for EV owners. Finally, we find that not only are electric bikes and EVs operationally similar, the sentiments towards the two technologies are as well. Advancements made in the battery sector, especially those that reduce costs or weight, are likely to accelerate sales in both markets. The results presented in this thesis, as well as in prior work, suggest that EVs are suitable for many drivers and will hence serve a role in our eventual transition away from fossil fuels

    Electric Vehicles with a Battery Switching Station: Adoption and Environmental Impact

    Get PDF
    corecore