3,550 research outputs found

    A Novel Generic Battery Modeling Approach for Power System Simulation Applications

    Get PDF
    Very large capacity energy storage systems are required in power systems for utility shaping when renewable energy systems like wind farms are not supporting sufficient generation. Energy storage systems are indispensible during evacuation problem in existing grid structure. For addressing power quality aspects also, quick responsive energy storage systems are requisite. In these contexts, before practical implementation of energy storage systems, for a particular or combined application, its characteristics are to be simulated in power system environment to suit for the specific application. In this perspective, the various battery modeling are briefed and a novel generic battery modeling approach which will be useful in power system simulation application is presented in this paper. The contribution through this work is, real time physical parameters of battery are incorporated in look-up table. Those values are read during simulation to compute standard electrode potential of battery. As future scope of work, real-time interfacing of physical parameters of battery can be implemented during simulation. Vanadium redox flow battery and lithium-ion battery are simulated using the generic battery modeling approach and their results presented, comparing their suitability for utility shaping, power quality enhancement aspects and distributed grid technology application

    Influence of Battery Parametric Uncertainties on the State-of-Charge Estimation of Lithium Titanate Oxide-Based Batteries

    Get PDF
    State of charge (SOC) is one of the most important parameters in battery management systems, as it indicates the available battery capacity at every moment. There are numerous battery model-based methods used for SOC estimation, the accuracy of which depends on the accuracy of the model considered to describe the battery dynamics. The SOC estimation method proposed in this paper is based on an Extended Kalman Filter (EKF) and nonlinear battery model which was parameterized using extended laboratory tests performed on several 13 Ah lithium titanate oxide (LTO)-based lithium-ion batteries. The developed SOC estimation algorithm was successfully verified for a step discharge profile at five different temperatures and considering various initial SOC initialization values, showing a maximum SOC estimation error of 1.16% and a maximum voltage estimation error of 44 mV. Furthermore, by carrying out a sensitivity analysis it was showed that the SOC and voltage estimation error are only slightly dependent on the variation of the battery model parameters with the SOC

    Design and Application of Electrical Machines

    Get PDF
    Electrical machines are one of the most important components of the industrial world. They are at the heart of the new industrial revolution, brought forth by the development of electromobility and renewable energy systems. Electric motors must meet the most stringent requirements of reliability, availability, and high efficiency in order, among other things, to match the useful lifetime of power electronics in complex system applications and compete in the market under ever-increasing pressure to deliver the highest performance criteria. Today, thanks to the application of highly efficient numerical algorithms running on high-performance computers, it is possible to design electric machines and very complex drive systems faster and at a lower cost. At the same time, progress in the field of material science and technology enables the development of increasingly complex motor designs and topologies. The purpose of this Special Issue is to contribute to this development of electric machines. The publication of this collection of scientific articles, dedicated to the topic of electric machine design and application, contributes to the dissemination of the above information among professionals dealing with electrical machines

    Component and system design of a mild hybrid 48 V powertrain for a light vehicle

    Get PDF
    This thesis presents contributions in three areas relevant for the development of 48 V mild hybrid electric powertrains for cars. The first part comprises methodologies and extensive testing of lithium-ion battery cells in order to establish the electric and thermal performance using equivalent circuit models.\ua0 Empirical, lumped-parameter models are used to ensure fast simulation execution using only linear circuit elements. Both electrochemical impedance spectroscopy and high-current pulse discharge testing is used to extract model parameters. Plenty of parameter results are published for various cells, temperatures and SOC levels. Further on, the model accuracy in voltage response is also evaluated. It is found that an R+2RC equivalent circuit offers the lowest error, 11 mV RMSE in a 1.5 h drive cycle, which is among the lowest numbers found in the literature for similar models. In the second part, electric machines with tooth-coil windings are explored as a viable candidate for mild hybrids. First, a method of analytically calculating the high-level electro-magnetic properties for all possible combinations of three-phase, dual layer tooth-coil winding machines is established and presented in a graphically appealing manner.\ua0 Then, a pair of pseudo-6-phase 50 kW PMSMs are designed, constructed and validated in a custom designed calorimetric dynamo test stand. These machines feature in-stator and in-slot forced oil cooling, enabling very high current densities of 25\ua0A/mm\ub2 continuous and 35\ua0A/mm\ub2 peak. A high net power density (19 kW/l) and a large area of high peak efficiency (95%) is shown numerically and validated by calorimetric measurements. Finally, low-level design, construction and evaluation of 48 V inverter hardware is explored. By using high-performance, extra-low-voltage silicon-based MOSFETs with custom designed metal substrate printed circuit boards, custom made gate drivers, and water cooling, 3x220 A RMS is reached experimentally on a 154 cm\ub2 area and an efficiency of 95.6%

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators

    High-Efficiency Three-Phase Current Source Rectifier Using SiC Devices and Delta-Type Topology

    Get PDF
    In this dissertation, the benefits of the three-phase current source rectifier (CSR) in high power rectifier, data center power supply and dc fast charger for electric vehicles (EV) will be evaluated, and new techniques will be proposed to increase the power efficiency of CSRs. A new topology, referred as Delta-type Current Source Rectifier (DCSR), is proposed and implemented to reduce the conduction loss by up to 20%. By connecting the three legs in a delta type on ac input side, the dc-link current in DCSR can be shared by two legs at the same time. To increase the switching speed and power density, all-SiC power modules are built and implemented for CSRs. The switching waveforms in the commutation are measured and studied based on double pulse test. Four different modulation schemes are compared for high efficiency CSR considering the switching characteristics of different device combinations. The most advantageous modulation scheme is then identified for each of the device combinations investigated. A compensation method is proposed to reduce the input current distortion caused by overlap time and slow transition in CSRs. The proposed method first minimizes the overlap time and then compensates the charge gain/loss according to the sampled voltage and current. It is verified that the proposed method can reduce the input current distortion especially when the line-to-line voltage is close to zero. The dc-link current will become discontinuous under light load in CSRs, when the traditional control algorithm may not work consistently well. To operate CSR in discontinuous current mode (DCM), the CSR is modeled in DCM and a new control algorithm with feedforward compensation is proposed and verified through experiments. A protection scheme with fast response time is proposed, analyzed and verified to protect SiC devices from overvoltage caused by current interruption in CSRs. To deal with the harmonics and voltage sag in the input ac voltage, a new control algorithm is proposed. By adding ac current feedback control and proportional-resonant (PR) control, the proposed control algorithm can reduce the input current distortion and dc output voltage ripple under input voltage disturbance

    Applications of Power Electronics:Volume 1

    Get PDF
    • …
    corecore