53 research outputs found

    GaN-Based High Efficiency Transmitter for Multiple-Receiver Wireless Power Transfer

    Get PDF
    Wireless power transfer (WPT) has attracted great attention from industry and academia due to high charging flexibility. However, the efficiency of WPT is lower and the cost is higher than the wired power transfer approaches. Efforts including converter optimization, power delivery architecture improvement, and coils have been made to increase system efficiency.In this thesis, new power delivery architectures in the WPT of consumer electronics have been proposed to improve the overall system efficiency and increase the power density.First, a two-stage transmitter architecture is designed for a 100 W WPT system. After comparing with other topologies, the front-end ac-dc power factor correction (PFC) rectifier employs a totem-pole rectifier. A full bridge 6.78 MHz resonant inverter is designed for the subsequent stage. An impedance matching network provides constant transmitter coil current. The experimental results verify the high efficiency, high PF, and low total harmonic distortion (THD).Then, a single-stage transmitter is derived based on the verified two-stage structure. By integration of the PFC rectifier and full bridge inverter, two GaN FETs are saved and high efficiency is maintained. The integrated DCM operated PFC rectifier provides high PF and low THD. By adopting a control scheme, the transmitter coil current and power are regulated. A simple auxiliary circuit is employed to improve the light load efficiency. The experimental results verify the achievement of high efficiency.A closed-loop control scheme is implemented in the single-stage transmitter to supply multiple receivers simultaneously. With a controlled constant transmitter current, the system provides a smooth transition during dynamically load change. ZVS detection circuit is proposed to protect the transmitter from continuous hard switching operation. The control scheme is verified in the experiments.The multiple-reciever WPT system with the single-stage transmitter is investigated. The system operating range is discussed. The method of tracking optimum system efficiency is studied. The system control scheme and control procedure, targeting at providing a wide system operating range, robust operation and capability of tracking the optimized system efficiency, are proposed. Experiment results demonstrate the WPT system operation

    Capacitive power transfer for maritime electrical charging applications

    Get PDF
    Wireless power transfer can provide the convenience of automatic charging while the ships or maritime vehicles are docking, mooring, or in a sailing maneuver. It can address the challenges facing conventional wired charging technologies, including long charging and queuing time, wear and tear of the physical contacts, handling cables and wires, and electric shock hazards. Capacitive power transfer (CPT) is one of the wireless charging technologies that has received attention in on-road electric vehicle charging applications. By the main of electric fields, CPT offers an inexpensive and light charging solution with good misalignment performance. Thus, this study investigates the CPT system in which air and water are the separation medium for the electrical wireless charging of small ships and unmanned maritime vehicles. Unlike on-road charging applications, air or water can be utilized as charging mediums to charge small ships and unmanned maritime vehicles. Because of the low permittivity of the air, the air-gapped capacitive coupling in the Pico Farad range requires a mega-hertz operating frequency to transfer power over a few hundred millimeters. This study examines an air-gapped CPT system to transfer about 135 W at a separation distance of 50 mm, a total efficiency of approximately 83.9%, and a 1 MHz operating efficiency. At 13.56 MHz, the study tested a shielded air-gapped CPT system that transfers about 100 W at a separation distance of 30 mm and a total efficiency of about 87%. The study also examines the underwater CPT system by submerging the couplers in water to increase the capacitive coupling. The system can transfer about 129 W at a separation distance of 300 mm, a total efficiency of aboutapproximately%, and a 1.1 MHz operating efficiency. These CPT systems can upscale to provide a few kW for small ships and unmanned maritime vehicles. But they are still facing several challenges that need further investigations

    Modeling and Control of a 7-Level Switched Capacitor Rectifier for Wireless Power Transfer Systems

    Get PDF
    Wireless power continues to increase in popularity for consumer device charging. Rectifier characteristics like efficiency, compactness, impedance tunability, and harmonic content make the multi-level switched capacitor rectifier (MSC) an exceptional candidate for modern WPT systems. The MSC shares the voltage conversion characteristics of a post-rectification buck-boost topology, reduces waveform distortion via its multi-level modulation scheme, demonstrates tank tunability via the phase control inherent to actively switched rectifiers, and accomplishes all this without a bulky filter inductor. In this work, the MSC WPT system operation is explained, and a loss model is constructed. A prototype system is used to validate the models, showing exceptional agreement with the predicted efficiencies. The modeled MSC efficiencies are between 96.1% and 98.0% over the experimental power range up to 20.0 W. Two significant control loops are required for the MSC to be implemented in a real system. First, the output power is regulated using the modulation of the rectifier\u27s input voltage. Second, the switching frequency of the rectifier must exactly match the WPT carrier frequency set by the inverter on the primary side. Here, a small signal discrete time model is used to construct four transfer functions relating to the output voltage. Then, four novel time-to-time transfer functions are built on top of the discrete time model to inform the frequency synchronization feedback loop. Both loops are tested and validated in isolation. Finally, the dual-loop control problem is defined, closed form equations that include loop interactions are derived, and stable wide-range dual-loop operation is demonstrated experimentally

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells

    Applications of Power Electronics:Volume 2

    Get PDF

    Solid State Generator for the Float Zone Process

    Get PDF

    ワイヤレス電力伝送システムにおける二次側のみの制御による電力と効率の同時制御法の開発研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 堀 洋一, 東京大学教授 大崎 博之, 東京大学教授 古関 隆章, 東京大学准教授 藤本 博志, 東京大学准教授 馬場 旬平, 東京大学准教授 川原 圭博University of Tokyo(東京大学

    JTIT

    Get PDF
    kwartalni

    Fuel Cell Renewable Hybrid Power Systems

    Get PDF
    Climate change is becoming visible today, and so this book—through including innovative solutions and experimental research as well as state-of-the-art studies in challenging areas related to sustainable energy development based on hybrid energy systems that combine renewable energy systems with fuel cells—represents a useful resource for researchers in these fields. In this context, hydrogen fuel cell technology is one of the alternative solutions for the development of future clean energy systems. As this book presents the latest solutions, readers working in research areas related to the above are invited to read it
    corecore