345 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Simulation-Based Analysis on Operational Control of Batch Processors in Wafer Fabrication

    Full text link
    [EN] In semiconductor wafer fabrication (wafer fab), wafers go through hundreds of process steps on a variety of processing machines for electrical circuit building operations. One of the special features in the wafer fabs is that there exist batch processors (BPs) where several wafer lots are processed at the same time as a batch. The batch processors have a significant influence on system performance because the repetitive batching and de-batching activities in a reentrant product flow system lead to non-smooth product flows with high variability. Existing research on the BP control problems has mostly focused on the local performance, such as waiting time at the BP stations. This paper attempts to examine how much BP control policies affect the system-wide behavior of the wafer fabs. A simulation model is constructed with which experiments are performed to analyze the performance of BP control rules under various production environments. Some meaningful insights on BP control decisions are identified through simulation results.This work was supported by the Pukyong National University Research Abroad Fund (C-D-2016-0843).Koo, P.; Ruiz García, R. (2020). Simulation-Based Analysis on Operational Control of Batch Processors in Wafer Fabrication. Applied Sciences. 10(17):1-17. https://doi.org/10.3390/app10175936S1171017Wang, L.-C., Chu, P.-C., & Lin, S.-Y. (2019). Impact of capacity fluctuation on throughput performance for semiconductor wafer fabrication. Robotics and Computer-Integrated Manufacturing, 55, 208-216. doi:10.1016/j.rcim.2018.03.005Ham, M. (2012). Integer programming-based real-time dispatching (i-RTD) heuristic for wet-etch station at wafer fabrication. International Journal of Production Research, 50(10), 2809-2822. doi:10.1080/00207543.2011.594816Mathirajan, M., & Sivakumar, A. I. (2006). A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor. The International Journal of Advanced Manufacturing Technology, 29(9-10), 990-1001. doi:10.1007/s00170-005-2585-1FOWLER, J. W., HOGG, G. L., & PHILLIPS, D. T. (2000). Control of multiproduct bulk server diffusion/oxidation processes. Part 2: multiple servers. IIE Transactions, 32(2), 167-176. doi:10.1080/07408170008963889Van Der Zee, D. J. (2002). Adaptive scheduling of batch servers in flow shops. International Journal of Production Research, 40(12), 2811-2833. doi:10.1080/00207540210136559Wang, J., Zheng, P., & Zhang, J. (2020). Big data analytics for cycle time related feature selection in the semiconductor wafer fabrication system. Computers & Industrial Engineering, 143, 106362. doi:10.1016/j.cie.2020.106362Neuts, M. F. (1967). A General Class of Bulk Queues with Poisson Input. The Annals of Mathematical Statistics, 38(3), 759-770. doi:10.1214/aoms/1177698869Deb, R. K., & Serfozo, R. F. (1973). Optimal control of batch service queues. Advances in Applied Probability, 5(2), 340-361. doi:10.2307/1426040Gurnani, H., Anupindi, R., & Akella, R. (1992). Control of batch processing systems in semiconductor wafer fabrication facilities. IEEE Transactions on Semiconductor Manufacturing, 5(4), 319-328. doi:10.1109/66.175364Avramidis, A. N., Healy, K. J., & Uzsoy, R. (1998). Control of a batch-processing machine: A computational approach. International Journal of Production Research, 36(11), 3167-3181. doi:10.1080/002075498192355Fowler, J. W., Phojanamongkolkij, N., Cochran, J. K., & Montgomery, D. C. (2002). Optimal batching in a wafer fabrication facility using a multiproduct G/G/c model with batch processing. International Journal of Production Research, 40(2), 275-292. doi:10.1080/00207540110081489Glassey, C. R., & Weng, W. W. (1991). Dynamic batching heuristic for simultaneous processing. IEEE Transactions on Semiconductor Manufacturing, 4(2), 77-82. doi:10.1109/66.79719Fowler, J. W., Phillips, D. T., & Hogg, G. L. (1992). Real-time control of multiproduct bulk-service semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 5(2), 158-163. doi:10.1109/66.136278Sarin, S. C., Varadarajan, A., & Wang, L. (2010). A survey of dispatching rules for operational control in wafer fabrication. Production Planning & Control, 22(1), 4-24. doi:10.1080/09537287.2010.490014Koo, P.-H., & Moon, D. H. (2013). A Review on Control Strategies of Batch Processing Machines in Semiconductor Manufacturing. IFAC Proceedings Volumes, 46(9), 1690-1695. doi:10.3182/20130619-3-ru-3018.00203Leachman, R. C., Kang, J., & Lin, V. (2002). SLIM: Short Cycle Time and Low Inventory in Manufacturing at Samsung Electronics. Interfaces, 32(1), 61-77. doi:10.1287/inte.32.1.61.15ROBINSON, J. K., FOWLER, J. W., & BARD, J. F. (1995). The use of upstream and downstream information in scheduling semiconductor batch operations. International Journal of Production Research, 33(7), 1849-1869. doi:10.1080/00207549508904785NEALE, J. J., & DUENYAS, I. (2000). Control of manufacturing networks which contain a batch processing machine. IIE Transactions, 32(11), 1027-1041. doi:10.1080/07408170008967459SOLOMON, L., FOWLER, J. W., PFUND, M., & JENSEN, P. H. (2002). THE INCLUSION OF FUTURE ARRIVALS AND DOWNSTREAM SETUPS INTO WAFER FABRICATION BATCH PROCESSING DECISIONS. Journal of Electronics Manufacturing, 11(02), 149-159. doi:10.1142/s0960313102000370Çerekçi, A., & Banerjee, A. (2015). Effect of upstream re-sequencing in controlling cycle time performance of batch processors. Computers & Industrial Engineering, 88, 206-216. doi:10.1016/j.cie.2015.07.005Yeong-Dae, K., Dong-Ho, L., Jung-Ug, K., & Hwan-Kyun, R. (1998). A simulation study on lot release control, mask scheduling, and batch scheduling in semiconductor wafer fabrication facilities. Journal of Manufacturing Systems, 17(2), 107-117. doi:10.1016/s0278-6125(98)80024-1Bahaji, N., & Kuhl, M. E. (2008). A simulation study of new multi-objective composite dispatching rules, CONWIP, and push lot release in semiconductor fabrication. International Journal of Production Research, 46(14), 3801-3824. doi:10.1080/00207540600711879Li, Y., Jiang, Z., & Jia, W. (2013). An integrated release and dispatch policy for semiconductor wafer fabrication. International Journal of Production Research, 52(8), 2275-2292. doi:10.1080/00207543.2013.854938SPEARMAN, M. L., WOODRUFF, D. L., & HOPP, W. J. (1990). CONWIP: a pull alternative to kanban. International Journal of Production Research, 28(5), 879-894. doi:10.1080/00207549008942761Wein, L. M. (1988). Scheduling semiconductor wafer fabrication. IEEE Transactions on Semiconductor Manufacturing, 1(3), 115-130. doi:10.1109/66.4384Glassey, C. R., & Resende, M. G. C. (1988). Closed-loop job release control for VLSI circuit manufacturing. IEEE Transactions on Semiconductor Manufacturing, 1(1), 36-46. doi:10.1109/66.4371Qi, C., Sivakumar, A. I., & Gershwin, S. B. (2008). An efficient new job release control methodology. International Journal of Production Research, 47(3), 703-731. doi:10.1080/00207540701455335Yeong-Dae Kim, Jae-Gon Kim, Bum Choi, & Hyung-Un Kim. (2001). Production scheduling in a semiconductor wafer fabrication facility producing multiple product types with distinct due dates. IEEE Transactions on Robotics and Automation, 17(5), 589-598. doi:10.1109/70.96466

    Batching Problems with Constraints

    Full text link
    There is an increasing demand for a phenomenon that can manifest benefits gained from grouping similar jobs together and then scheduling these groups efficiently. Batching is the decision of whether or not to put the jobs into same group based on certain criteria. Batching plays a major role in job scheduling in Information Technology, traffic controlling systems, and goods-flow management. A list batching problem refers to batching a list of jobs in the same order or priority as given in the problem. In this thesis we consider a one-machine list batching problem under weighted average completion. Given sequence of jobs are scheduled on single machine into distinct batches. Constraint is to batch these jobs into a fixed but arbitrary number ‘k’ of batches. Each batch can have any number of jobs (within the given list) grouped without changing the order of jobs. We call it a k-Batch problem. This is offline form of the batching problems, and is solved by reducing to a shortest path problem. We give an improved and faster version of the algorithm to solve k-Batch problem in O(n2) time
    corecore