1,337 research outputs found

    Unsupervised, Efficient and Semantic Expertise Retrieval

    Get PDF
    We introduce an unsupervised discriminative model for the task of retrieving experts in online document collections. We exclusively employ textual evidence and avoid explicit feature engineering by learning distributed word representations in an unsupervised way. We compare our model to state-of-the-art unsupervised statistical vector space and probabilistic generative approaches. Our proposed log-linear model achieves the retrieval performance levels of state-of-the-art document-centric methods with the low inference cost of so-called profile-centric approaches. It yields a statistically significant improved ranking over vector space and generative models in most cases, matching the performance of supervised methods on various benchmarks. That is, by using solely text we can do as well as methods that work with external evidence and/or relevance feedback. A contrastive analysis of rankings produced by discriminative and generative approaches shows that they have complementary strengths due to the ability of the unsupervised discriminative model to perform semantic matching.Comment: WWW2016, Proceedings of the 25th International Conference on World Wide Web. 201

    Efficient Generator of Mathematical Expressions for Symbolic Regression

    Full text link
    We propose an approach to symbolic regression based on a novel variational autoencoder for generating hierarchical structures, HVAE. It combines simple atomic units with shared weights to recursively encode and decode the individual nodes in the hierarchy. Encoding is performed bottom-up and decoding top-down. We empirically show that HVAE can be trained efficiently with small corpora of mathematical expressions and can accurately encode expressions into a smooth low-dimensional latent space. The latter can be efficiently explored with various optimization methods to address the task of symbolic regression. Indeed, random search through the latent space of HVAE performs better than random search through expressions generated by manually crafted probabilistic grammars for mathematical expressions. Finally, EDHiE system for symbolic regression, which applies an evolutionary algorithm to the latent space of HVAE, reconstructs equations from a standard symbolic regression benchmark better than a state-of-the-art system based on a similar combination of deep learning and evolutionary algorithms.\v{z}Comment: 35 pages, 11 tables, 7 multi-part figures, Machine learning (Springer) and journal track of ECML/PKDD 202

    MixUp as Locally Linear Out-Of-Manifold Regularization

    Full text link
    MixUp is a recently proposed data-augmentation scheme, which linearly interpolates a random pair of training examples and correspondingly the one-hot representations of their labels. Training deep neural networks with such additional data is shown capable of significantly improving the predictive accuracy of the current art. The power of MixUp, however, is primarily established empirically and its working and effectiveness have not been explained in any depth. In this paper, we develop an understanding for MixUp as a form of "out-of-manifold regularization", which imposes certain "local linearity" constraints on the model's input space beyond the data manifold. This analysis enables us to identify a limitation of MixUp, which we call "manifold intrusion". In a nutshell, manifold intrusion in MixUp is a form of under-fitting resulting from conflicts between the synthetic labels of the mixed-up examples and the labels of original training data. Such a phenomenon usually happens when the parameters controlling the generation of mixing policies are not sufficiently fine-tuned on the training data. To address this issue, we propose a novel adaptive version of MixUp, where the mixing policies are automatically learned from the data using an additional network and objective function designed to avoid manifold intrusion. The proposed regularizer, AdaMixUp, is empirically evaluated on several benchmark datasets. Extensive experiments demonstrate that AdaMixUp improves upon MixUp when applied to the current art of deep classification models.Comment: Accepted by AAAI201
    corecore