1,482 research outputs found

    Incremental Sparse GP Regression for Continuous-time Trajectory Estimation & Mapping

    Get PDF
    Recent work on simultaneous trajectory estimation and mapping (STEAM) for mobile robots has found success by representing the trajectory as a Gaussian process. Gaussian processes can represent a continuous-time trajectory, elegantly handle asynchronous and sparse measurements, and allow the robot to query the trajectory to recover its estimated position at any time of interest. A major drawback of this approach is that STEAM is formulated as a batch estimation problem. In this paper we provide the critical extensions necessary to transform the existing batch algorithm into an extremely efficient incremental algorithm. In particular, we are able to vastly speed up the solution time through efficient variable reordering and incremental sparse updates, which we believe will greatly increase the practicality of Gaussian process methods for robot mapping and localization. Finally, we demonstrate the approach and its advantages on both synthetic and real datasets.Comment: 10 pages, 10 figure

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved
    corecore