164 research outputs found

    Unsupervised and semi-supervised fuzzy clustering with multiple kernels.

    Get PDF
    For real-world clustering tasks, the input data is typically not easily separable due to the highly complex data structure or when clusters vary in size, density and shape. Recently, kernel-based clustering has been proposed to perform clustering in a higher-dimensional feature space spanned by embedding maps and corresponding kernel functions. Although good results were obtained using the Gaussian kernel function, its performance depends on the selection of the scaling parameter among an extensive range of possibilities. This step is often heavily influenced by prior knowledge about the data and by the patterns we expect to discover. Unfortunately, it is often unclear which kernels are more suitable for a particular task. The problem is aggravated for many real-world clustering applications, in which the distributions of the different clusters in the feature space exhibit large variations. Thus, in the absence of a priori knowledge, a single kernel selected from a predefined group is sometimes insufficient to represent the data. One way to learn optimal scaling parameters is through an exhaustive search of one optimal scaling parameter for each cluster. However, this approach is not practical since it is computationally expensive, especially when the data includes a large number of clusters and when the dynamic range of possible values of the scaling parameters is large. Moreover, the evaluation of the resulting partition in order to select the optimal parameters is not an easy task. To overcome the above drawbacks, we introduce two novel fuzzy clustering techniques that use Multiple Kernel Learning to provide an elegant solution for parameter selection. The Fuzzy C-Means with Multiple Kernels algorithm (FCMK) simultaneously finds the optimal partition and the cluster-dependent kernel combination weights that reflect the intrinsic structure of the data. The Relational Fuzzy Clustering with Multiple Kernels (RFCMK) learns the kernel combination weights by optimizing the relational dissimilarities. Consequently, the learned kernel combination weights reflect the relative density, size, and position of each cluster with respect to the other clusters. We also extended FCMK and RFCMK to the semi-supervised paradigms. We show that the incorporation of prior knowledge in the unsupervised clustering task in the form of a small set of constraints on which instances should or should not reside in the same cluster, guides the unsupervised approaches to a better partitioning of the data and avoid local minima, especially for high dimensional real world data. All of the proposed algorithms are optimized iteratively by dynamically updating the partition and the kernel combination weights in each iteration. This makes these algorithms simple and fast. Moreover, our algorithms are formulated to work on both vector and relational data. This makes them applicable to data where objects cannot be represented by vectors or when clusters of similar objects cannot be represented efficiently by a single prototype. We also introduced two relational fuzzy clustering with multiple kernel algorithms for large data to deal with the scalability issue of RFCMK. The random sample and extend RFCMK (rseRFCMK) computes cluster prototypes from a smaller sample of randomly selected objects, and then extends the partition to the remainder of the data. The single pass RFCMK (spRFCMK) sequentially loads manageable sized chunks, clustering the chunks in a single pass, and then combining the results from each chunk. Our extensive experiments show that RFCMK and SS-RFCMK outperform existing algorithms. In particular, we show that when data include clusters with various intrinsic structures and densities, learning kernel weights that vary over clusters is crucial in obtaining a good partition

    Automated Detection of Electric Energy Consumption Load Profile Patterns

    Full text link
    [EN] Load profiles of energy consumption from smart meters are becoming more and more available, and the amount of data to analyse is huge. In order to automate this analysis, the application of state-of-the-art data mining techniques for time series analysis is reviewed. In particular, the use of dynamic clustering techniques to obtain and visualise temporal patterns characterising the users of electrical energy is deeply studied. The performed review can be used as a guide for those interested in the automatic analysis and groups of behaviour detection within load profile databases. Additionally, a selection of dynamic clustering algorithms have been implemented and the performances compared using an available electric energy consumption load profile database. The results allow experts to easily evaluate how users consume energy, to assess trends and to predict future scenarios.The data analysed has been facilitated by the Spanish Distributor Iberdrola Electrical Distribution S.A. as part of the research project GAD (Active Management of the Demand), national project by DEVISE 2010 funded by the INGENIIO 2010 program and the CDTI (Centre for Industrial Technology Development), Business Public Entity dependent of the Ministry of Economy and Competitiveness of the Government of Spain.Benítez, I.; Diez, J. (2022). Automated Detection of Electric Energy Consumption Load Profile Patterns. Energies. 15(6):1-26. https://doi.org/10.3390/en1506217612615

    Unsupervised tracking of time-evolving data streams and an application to short-term urban traffic flow forecasting

    Get PDF
    I am indebted to many people for their help and support I receive during my Ph.D. study and research at DIBRIS-University of Genoa. First and foremost, I would like to express my sincere thanks to my supervisors Prof.Dr. Masulli, and Prof.Dr. Rovetta for the invaluable guidance, frequent meetings, and discussions, and the encouragement and support on my way of research. I thanks all the members of the DIBRIS for their support and kindness during my 4 years Ph.D. I would like also to acknowledge the contribution of the projects Piattaforma per la mobili\ue0 Urbana con Gestione delle INformazioni da sorgenti eterogenee (PLUG-IN) and COST Action IC1406 High Performance Modelling and Simulation for Big Data Applications (cHiPSet). Last and most importantly, I wish to thanks my family: my wife Shaimaa who stays with me through the joys and pains; my daughter and son whom gives me happiness every-day; and my parents for their constant love and encouragement

    Clustering of nonstationary data streams: a survey of fuzzy partitional methods

    Get PDF
    YesData streams have arisen as a relevant research topic during the past decade. They are real‐time, incremental in nature, temporally ordered, massive, contain outliers, and the objects in a data stream may evolve over time (concept drift). Clustering is often one of the earliest and most important steps in the streaming data analysis workflow. A comprehensive literature is available about stream data clustering; however, less attention is devoted to the fuzzy clustering approach, even though the nonstationary nature of many data streams makes it especially appealing. This survey discusses relevant data stream clustering algorithms focusing mainly on fuzzy methods, including their treatment of outliers and concept drift and shift.Ministero dell‘Istruzione, dell‘Universitá e della Ricerca

    Information Maximization Clustering via Multi-View Self-Labelling

    Full text link
    Image clustering is a particularly challenging computer vision task, which aims to generate annotations without human supervision. Recent advances focus on the use of self-supervised learning strategies in image clustering, by first learning valuable semantics and then clustering the image representations. These multiple-phase algorithms, however, increase the computational time and their final performance is reliant on the first stage. By extending the self-supervised approach, we propose a novel single-phase clustering method that simultaneously learns meaningful representations and assigns the corresponding annotations. This is achieved by integrating a discrete representation into the self-supervised paradigm through a classifier net. Specifically, the proposed clustering objective employs mutual information, and maximizes the dependency between the integrated discrete representation and a discrete probability distribution. The discrete probability distribution is derived though the self-supervised process by comparing the learnt latent representation with a set of trainable prototypes. To enhance the learning performance of the classifier, we jointly apply the mutual information across multi-crop views. Our empirical results show that the proposed framework outperforms state-of-the-art techniques with the average accuracy of 89.1% and 49.0%, respectively, on CIFAR-10 and CIFAR-100/20 datasets. Finally, the proposed method also demonstrates attractive robustness to parameter settings, making it ready to be applicable to other datasets

    Dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users

    Full text link
    [EN] The electricity sector is currently undergoing a process of liberalization and separation of roles, which is being implemented under the regulatory auspices of each Member State of the European Union and, therefore, with different speeds, perspectives and objectives that must converge on a common horizon, where Europe will benefit from an interconnected energy market in which producers and consumers can participate in free competition. This process of liberalization and separation of roles involves two consequences or, viewed another way, entails a major consequence from which other immediate consequence, as a necessity, is derived. The main consequence is the increased complexity in the management and supervision of a system, the electrical, increasingly interconnected and participatory, with connection of distributed energy sources, much of them from renewable sources, at different voltage levels and with different generation capacity at any point in the network. From this situation the other consequence is derived, which is the need to communicate information between agents, reliably, safely and quickly, and that this information is analyzed in the most effective way possible, to form part of the processes of decision taking that improve the observability and controllability of a system which is increasing in complexity and number of agents involved. With the evolution of Information and Communication Technologies (ICT), and the investments both in improving existing measurement and communications infrastructure, and taking the measurement and actuation capacity to a greater number of points in medium and low voltage networks, the availability of data that informs of the state of the network is increasingly higher and more complete. All these systems are part of the so-called Smart Grids, or intelligent networks of the future, a future which is not so far. One such source of information comes from the energy consumption of customers, measured on a regular basis (every hour, half hour or quarter-hour) and sent to the Distribution System Operators from the Smart Meters making use of Advanced Metering Infrastructure (AMI). This way, there is an increasingly amount of information on the energy consumption of customers, being stored in Big Data systems. This growing source of information demands specialized techniques which can take benefit from it, extracting a useful and summarized knowledge from it. This thesis deals with the use of this information of energy consumption from Smart Meters, in particular on the application of data mining techniques to obtain temporal patterns that characterize the users of electrical energy, grouping them according to these patterns in a small number of groups or clusters, that allow evaluating how users consume energy, both during the day and during a sequence of days, allowing to assess trends and predict future scenarios. For this, the current techniques are studied and, proving that the current works do not cover this objective, clustering or dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users are developed. These techniques are tested and validated on a database of hourly energy consumption values for a sample of residential customers in Spain during years 2008 and 2009. The results allow to observe both the characterization in consumption patterns of the different types of residential energy consumers, and their evolution over time, and to assess, for example, how the regulatory changes that occurred in Spain in the electricity sector during those years influenced in the temporal patterns of energy consumption.[ES] El sector eléctrico se halla actualmente sometido a un proceso de liberalización y separación de roles, que está siendo aplicado bajo los auspicios regulatorios de cada Estado Miembro de la Unión Europea y, por tanto, con distintas velocidades, perspectivas y objetivos que deben confluir en un horizonte común, en donde Europa se beneficiará de un mercado energético interconectado, en el cual productores y consumidores podrán participar en libre competencia. Este proceso de liberalización y separación de roles conlleva dos consecuencias o, visto de otra manera, conlleva una consecuencia principal de la cual se deriva, como necesidad, otra consecuencia inmediata. La consecuencia principal es el aumento de la complejidad en la gestión y supervisión de un sistema, el eléctrico, cada vez más interconectado y participativo, con conexión de fuentes distribuidas de energía, muchas de ellas de origen renovable, a distintos niveles de tensión y con distinta capacidad de generación, en cualquier punto de la red. De esta situación se deriva la otra consecuencia, que es la necesidad de comunicar información entre los distintos agentes, de forma fiable, segura y rápida, y que esta información sea analizada de la forma más eficaz posible, para que forme parte de los procesos de toma de decisiones que mejoran la observabilidad y controlabilidad de un sistema cada vez más complejo y con más agentes involucrados. Con el avance de las Tecnologías de Información y Comunicaciones (TIC), y las inversiones tanto en mejora de la infraestructura existente de medida y comunicaciones, como en llevar la obtención de medidas y la capacidad de actuación a un mayor número de puntos en redes de media y baja tensión, la disponibilidad de datos sobre el estado de la red es cada vez mayor y más completa. Todos estos sistemas forman parte de las llamadas Smart Grids, o redes inteligentes del futuro, un futuro ya no tan lejano. Una de estas fuentes de información proviene de los consumos energéticos de los clientes, medidos de forma periódica (cada hora, media hora o cuarto de hora) y enviados hacia las Distribuidoras desde los contadores inteligentes o Smart Meters, mediante infraestructura avanzada de medida o Advanced Metering Infrastructure (AMI). De esta forma, cada vez se tiene una mayor cantidad de información sobre los consumos energéticos de los clientes, almacenada en sistemas de Big Data. Esta cada vez mayor fuente de información demanda técnicas especializadas que sepan aprovecharla, extrayendo un conocimiento útil y resumido de la misma. La presente Tesis doctoral versa sobre el uso de esta información de consumos energéticos de los contadores inteligentes, en concreto sobre la aplicación de técnicas de minería de datos (data mining) para obtener patrones temporales que caractericen a los usuarios de energía eléctrica, agrupándolos según estos mismos patrones en un número reducido de grupos o clusters, que permiten evaluar la forma en que los usuarios consumen la energía, tanto a lo largo del día como durante una secuencia de días, permitiendo evaluar tendencias y predecir escenarios futuros. Para ello se estudian las técnicas actuales y, comprobando que los trabajos actuales no cubren este objetivo, se desarrollan técnicas de clustering o segmentación dinámica aplicadas a curvas de carga de consumo eléctrico diario de clientes domésticos. Estas técnicas se prueban y validan sobre una base de datos de consumos energéticos horarios de una muestra de clientes residenciales en España durante los años 2008 y 2009. Los resultados permiten observar tanto la caracterización en consumos de los distintos tipos de consumidores energéticos residenciales, como su evolución en el tiempo, y permiten evaluar, por ejemplo, cómo influenciaron en los patrones temporales de consumos los cambios regulatorios que se produjeron en España en el sector eléctrico durante esos años.[CA] El sector elèctric es troba actualment sotmès a un procés de liberalització i separació de rols, que s'està aplicant davall els auspicis reguladors de cada estat membre de la Unió Europea i, per tant, amb distintes velocitats, perspectives i objectius que han de confluir en un horitzó comú, on Europa es beneficiarà d'un mercat energètic interconnectat, en el qual productors i consumidors podran participar en lliure competència. Aquest procés de liberalització i separació de rols comporta dues conseqüències o, vist d'una altra manera, comporta una conseqüència principal de la qual es deriva, com a necessitat, una altra conseqüència immediata. La conseqüència principal és l'augment de la complexitat en la gestió i supervisió d'un sistema, l'elèctric, cada vegada més interconnectat i participatiu, amb connexió de fonts distribuïdes d'energia, moltes d'aquestes d'origen renovable, a distints nivells de tensió i amb distinta capacitat de generació, en qualsevol punt de la xarxa. D'aquesta situació es deriva l'altra conseqüència, que és la necessitat de comunicar informació entre els distints agents, de forma fiable, segura i ràpida, i que aquesta informació siga analitzada de la manera més eficaç possible, perquè forme part dels processos de presa de decisions que milloren l'observabilitat i controlabilitat d'un sistema cada vegada més complex i amb més agents involucrats. Amb l'avanç de les tecnologies de la informació i les comunicacions (TIC), i les inversions, tant en la millora de la infraestructura existent de mesura i comunicacions, com en el trasllat de l'obtenció de mesures i capacitat d'actuació a un nombre més gran de punts en xarxes de mitjana i baixa tensió, la disponibilitat de dades sobre l'estat de la xarxa és cada vegada major i més completa. Tots aquests sistemes formen part de les denominades Smart Grids o xarxes intel·ligents del futur, un futur ja no tan llunyà. Una d'aquestes fonts d'informació prové dels consums energètics dels clients, mesurats de forma periòdica (cada hora, mitja hora o quart d'hora) i enviats cap a les distribuïdores des dels comptadors intel·ligents o Smart Meters, per mitjà d'infraestructura avançada de mesura o Advanced Metering Infrastructure (AMI). D'aquesta manera, cada vegada es té una major quantitat d'informació sobre els consums energètics dels clients, emmagatzemada en sistemes de Big Data. Aquesta cada vegada major font d'informació demanda tècniques especialitzades que sàpiguen aprofitar-la, extraient-ne un coneixement útil i resumit. La present tesi doctoral versa sobre l'ús d'aquesta informació de consums energètics dels comptadors intel·ligents, en concret sobre l'aplicació de tècniques de mineria de dades (data mining) per a obtenir patrons temporals que caracteritzen els usuaris d'energia elèctrica, agrupant-los segons aquests mateixos patrons en una quantitat reduïda de grups o clusters, que permeten avaluar la forma en què els usuaris consumeixen l'energia, tant al llarg del dia com durant una seqüència de dies, i que permetent avaluar tendències i predir escenaris futurs. Amb aquesta finalitat, s'estudien les tècniques actuals i, en comprovar que els treballs actuals no cobreixen aquest objectiu, es desenvolupen tècniques de clustering o segmentació dinàmica aplicades a corbes de càrrega de consum elèctric diari de clients domèstics. Aquestes tècniques es proven i validen sobre una base de dades de consums energètics horaris d'una mostra de clients residencials a Espanya durant els anys 2008 i 2009. Els resultats permeten observar tant la caracterització en consums dels distints tipus de consumidors energètics residencials, com la seua evolució en el temps, i permeten avaluar, per exemple, com van influenciar en els patrons temporals de consums els canvis reguladors que es van produir a Espanya en el sector elèctric durant aquests anys.Benítez Sánchez, IJ. (2015). Dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59236TESI

    Magnitude Sensitive Competitive Neural Networks

    Get PDF
    En esta Tesis se presentan un conjunto de redes neuronales llamadas Magnitude Sensitive Competitive Neural Networks (MSCNNs). Se trata de un conjunto de algoritmos de Competitive Learning que incluyen un término de magnitud como un factor de modulación de la distancia usada en la competición. Al igual que otros métodos competitivos, MSCNNs realizan la cuantización vectorial de los datos, pero el término de magnitud guía el entrenamiento de los centroides de modo que se representan con alto detalle las zonas deseadas, definidas por la magnitud. Estas redes se han comparado con otros algoritmos de cuantización vectorial en diversos ejemplos de interpolación, reducción de color, modelado de superficies, clasificación, y varios ejemplos sencillos de demostración. Además se introduce un nuevo algoritmo de compresión de imágenes, MSIC (Magnitude Sensitive Image Compression), que hace uso de los algoritmos mencionados previamente, y que consigue una compresión de la imagen variable según una magnitud definida por el usuario. Los resultados muestran que las nuevas redes neuronales MSCNNs son más versátiles que otros algoritmos de aprendizaje competitivo, y presentan una clara mejora en cuantización vectorial sobre ellos cuando el dato está sopesado por una magnitud que indica el ¿interés¿ de cada muestra

    Unsupervised and semi-supervised clustering with learnable cluster dependent kernels.

    Get PDF
    Despite the large number of existing clustering methods, clustering remains a challenging task especially when the structure of the data does not correspond to easily separable categories, and when clusters vary in size, density and shape. Existing kernel based approaches allow to adapt a specific similarity measure in order to make the problem easier. Although good results were obtained using the Gaussian kernel function, its performance depends on the selection of the scaling parameter. Moreover, since one global parameter is used for the entire data set, it may not be possible to find one optimal scaling parameter when there are large variations between the distributions of the different clusters in the feature space. One way to learn optimal scaling parameters is through an exhaustive search of one optimal scaling parameter for each cluster. However, this approach is not practical since it is computationally expensive especially when the data includes a large number of clusters and when the dynamic range of possible values of the scaling parameters is large. Moreover, it is not trivial to evaluate the resulting partition in order to select the optimal parameters. To overcome this limitation, we introduce two new fuzzy relational clustering techniques that learn cluster dependent Gaussian kernels. The first algorithm called clustering and Local Scale Learning algorithm (LSL) minimizes one objective function for both the optimal partition and for cluster dependent scaling parameters that reflect the intra-cluster characteristics of the data. The second algorithm, called Fuzzy clustering with Learnable Cluster dependent Kernels (FLeCK) learns the scaling parameters by optimizing both the intra-cluster and the inter-cluster dissimilarities. Consequently, the learned scale parameters reflect the relative density, size, and position of each cluster with respect to the other clusters. We also introduce semi-supervised versions of LSL and FLeCK. These algorithms generate a fuzzy partition of the data and learn the optimal kernel resolution of each cluster simultaneously. We show that the incorporation of a small set of constraints can guide the clustering process to better learn the scaling parameters and the fuzzy memberships in order to obtain a better partition of the data. In particular, we show that the partial supervision is even more useful on real high dimensional data sets where the algorithms are more susceptible to local minima. All of the proposed algorithms are optimized iteratively by dynamically updating the partition and the scaling parameter in each iteration. This makes these algorithms simple and fast. Moreover, our algorithms are formulated to work on relational data. This makes them applicable to data where objects cannot be represented by vectors or when clusters of similar objects cannot be represented efficiently by a single prototype. Our extensive experiments show that FLeCK and SS-FLeCK outperform existing algorithms. In particular, we show that when data include clusters with various inter-cluster and intra-cluster distances, learning cluster dependent kernel is crucial in obtaining a good partition

    Advances in transfer learning methods based on computational intelligence

    Get PDF
    Traditional machine learning and data mining have made tremendous progress in many knowledge-based areas, such as clustering, classification, and regression. However, the primary assumption in all of these areas is that the training and testing data should be in the same domain and have the same distribution. This assumption is difficult to achieve in real-world applications due to the limited availability of labeled data. Associated data in different domains can be used to expand the availability of prior knowledge about future target data. In recent years, transfer learning has been used to address such cross-domain learning problems by using information from data in a related domain and transferring that data to the target task. The transfer learning methodology is utilized in this work with unsupervised and supervised learning methods. For unsupervised learning, a novel transfer-learning possibilistic c-means (TLPCM) algorithm is proposed to handle the PCM clustering problem in a domain that has insufficient data. Moreover, TLPCM overcomes the problem of differing numbers of clusters between the source and target domains. The proposed algorithm employs the historical cluster centers of the source data as a reference to guide the clustering of the target data. The experimental studies presented here were thoroughly evaluated, and they demonstrate the advantages of TLPCM in both synthetic and real-world transfer datasets. For supervised learning, a transfer learning (TL) technique is used to pre-train a CNN model on posture data and then fine-tune it on the sleep stage data. We used a ballistocardiography (BCG) bed sensor to collect both posture and sleep stage data to provide a non-invasive, in-home monitoring system that tracks changes in the subjects' health over time. The quality of sleep has a significant impact on health and life. This study adopts a hierarchical and none-hierarchical classification structure to develop an automatic sleep stage classification system using ballistocardiogram (BCG) signals. A leave-one-subject-out cross-validation (LOSO-CV) procedure is used for testing classification performance in most of the experiments. Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Deep Neural Networks DNNs are complementary in their modeling capabilities, while CNNs have the advantage of reducing frequency variations, LSTMs are good at temporal modeling. Polysomnography (PSG) data from a sleep lab was used as the ground truth for sleep stages, with the emphasis on three sleep stages, specifically, awake, rapid eye movement (REM), and non-REM sleep (NREM). Moreover, a transfer learning approach is employed with supervised learning to address the cross-resident training problem to predict early illness. We validate our method by conducting a retrospective study on three residents from TigerPlace, a retirement community in Columbia, MO, where apartments are fitted with wireless networks of motion and bed sensors. Predicting the early signs of illness in older adults by using a continuous, unobtrusive nursing home monitoring system has been shown to increase the quality of life and decrease care costs. Illness prediction is based on sensor data and uses algorithms such as support vector machine (SVM) and k-nearest neighbors (kNN). One of the most significant challenges related to the development of prediction algorithms for sensor networks is the use of knowledge from previous residents to predict new ones' behaviors. Each day, the presence or absence of illness was manually evaluated using nursing visit reports from a homegrown electronic medical record (EMR) system. In this work, the transfer learning SVM approach outperformed three other methods, i.e., regular SVM, one-class SVM, and one-class kNN.Includes bibliographical references (pages 114-127)
    corecore